Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(8): e0237986, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32841282

RESUMO

Insects experience a diversity of subtoxic and/or toxic xenobiotics through exposure to pesticides and, in the case of herbivorous insects, through plant defensive compounds in their diets. Many insects are also concurrently exposed to antioxidants in their diets. The impact of dietary antioxidants on the toxicity of xenobiotics in insects is not well understood, in part due to the challenge of developing appropriate systems in which doses and exposure times (of both the antioxidants and the xenobiotics) can be controlled and outcomes can be easily measured. However, in Drosophila melanogaster, a well-established insect model system, both dietary factors and pesticide exposure can be easily controlled. Additionally, the mode of action and xenobiotic metabolism of dichlorodiphenyltrichloroethane (DDT), a highly persistent neurotoxic organochlorine insecticide that is detected widely in the environment, have been well studied in DDT-susceptible and -resistant strains. Using a glass-vial bioassay system with blue diet as the food source, seven compounds with known antioxidant effects (ascorbic acid, ß-carotene, glutathione, α-lipoic acid, melatonin, minocycline, and serotonin) were orally tested for their impact on DDT toxicity across three strains of D. melanogaster: one highly susceptible to DDT (Canton-S), one mildly susceptible (91-C), and one highly resistant (91-R). Three of the antioxidants (serotonin, ascorbic acid, and ß-carotene) significantly impacted the toxicity of DDT in one or more strains. Fly strain and gender, antioxidant type, and antioxidant dose all affected the relative toxicity of DDT. Our work demonstrates that dietary antioxidants can potentially alter the toxicity of a xenobiotic in an insect population.


Assuntos
Antioxidantes/farmacologia , DDT/toxicidade , Dieta , Drosophila melanogaster/efeitos dos fármacos , Resistência a Inseticidas/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Feminino , Genótipo , Masculino , Serotonina/farmacologia , Caracteres Sexuais
2.
Pestic Biochem Physiol ; 168: 104631, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32711765

RESUMO

Herbivorous insects encounter a variety of toxic environmental substances ranging from ingested plant defensive compounds to human-introduced insecticidal agents. Dietary antioxidants are known to reduce the negative physiological impacts of toxins in mammalian systems through amelioration of reactive oxygen-related cellular damage. The analogous impacts to insects caused by multigenerational exposure to pesticides and the effects on adaptive responses within insect populations, however, are currently unknown. To address these research gaps, we used Drosophila as a model system to explore adaptive phenotypic responses to acute dichlorodiphenyltrichloroethane (DDT) exposure in the presence of the dietary antioxidant vitamin C and to examine the structural genomic consequences of this exposure. DDT resistance increased significantly among four replicates exposed to a low concentration of DDT for 10 generations. In contrast, dietary intake of vitamin C significantly reduced DDT resistance after mutigenerational exposure to the same concentration of DDT. As to the genomic consequences, no significant differences were predicted in overall nucleotide substitution rates across the genome between any of the treatments. Despite this, replicates exposed to a low concentration of DDT without vitamin C showed the highest number of synonymous and non-synonymous variants (3196 in total), followed by the DDT plus vitamin C (1174 in total), and vitamin C alone (728 in total) treatments. This study demonstrates the potential role of diet (specifically, antioxidant intake) on adaptive genome responses, and thus on the evolution of pesticide resistance within insect populations.


Assuntos
Drosophila melanogaster/efeitos dos fármacos , Inseticidas/farmacologia , Animais , Antioxidantes , Ácido Ascórbico , DDT , Dieta , Humanos , Resistência a Inseticidas/efeitos dos fármacos
3.
J Insect Physiol ; 56(9): 1198-206, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20346948

RESUMO

The Hessian fly, Mayetiola destructor, is a serious pest of wheat and an experimental organism for the study of gall midge-plant interactions. In addition to food digestion and detoxification, the gut of Hessian fly larvae is also an important interface for insect-host interactions. Analysis of the genes expressed in the Hessian fly larval gut will enhance our understanding of the overall gut physiology and may also lead to the identification of critical molecules for Hessian fly-host plant interactions. Over 10,000 Expressed Sequence Tags (ESTs) were generated and assembled into 2007 clusters. The most striking feature of the Hessian fly larval transcriptome is the existence of a large number of transcripts coding for so-called small secretory proteins (SSP) with amino acids less than 250. Eleven of the 30 largest clusters were SSP transcripts with the largest cluster containing 11.3% of total ESTs. Transcripts coding for diverse digestive enzymes and detoxification proteins were also identified. Putative digestive enzymes included trypsins, chymotrypsins, cysteine proteases, aspartic protease, endo-oligopeptidase, aminopeptidases, carboxypeptidases, and alpha-amylases. Putative detoxification proteins included cytochrome P450s, glutathione S-transferases, peroxidases, ferritins, a catalase, peroxiredoxins, and others. This study represents the first global analysis of gut transcripts from a gall midge. The identification of a large number of transcripts coding for SSPs, digestive enzymes, detoxification proteins in the Hessian fly larval gut provides a foundation for future studies on the functions of these genes.


Assuntos
Dípteros/metabolismo , Enzimas/genética , Etiquetas de Sequências Expressas , Trato Gastrointestinal/metabolismo , Perfilação da Expressão Gênica , Animais , Sequência de Bases , Dípteros/genética , Biblioteca Gênica , Larva/metabolismo , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Análise de Sequência de DNA
4.
PLoS One ; 5(1): e8735, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20090945

RESUMO

BACKGROUND: Herbivore feeding elicits dramatic increases in defenses, most of which require jasmonate (JA) signaling, and against which specialist herbivores are thought to be better adapted than generalist herbivores. Unbiased transcriptional analyses of how neonate larvae cope with these induced plant defenses are lacking. METHODOLOGY/PRINCIPAL FINDINGS: We created cDNA microarrays for Manduca sexta and Heliothis virescens separately, by spotting normalized midgut-specific cDNA libraries created from larvae that fed for 24 hours on MeJA-elicited wild-type (WT) Nicotiana attenuata plants. These microarrays were hybridized with labeled probes from neonates that fed for 24 hours on WT and isogenic plants progressively silenced in JA-mediated defenses (N: nicotine; N/PI: N and trypsin protease inhibitors; JA: all JA-mediated defenses). H. virescens neonates regulated 16 times more genes than did M. sexta neonates when they fed on plants silenced in JA-mediated defenses, and for both species, the greater the number of defenses silenced in the host plant (JA > N/PI > N), the greater were the number of transcripts regulated in the larvae. M. sexta larvae tended to down-regulate while H. virescens larvae up- and down-regulated transcripts from the same functional categories of genes. M. sexta larvae regulated transcripts in a diet-specific manner, while H. virescens larvae regulated a similar suite of transcripts across all diet types. CONCLUSIONS/SIGNIFICANCE: The observations are consistent with the expectation that specialists are better adapted than generalist herbivores to the defense responses elicited in their host plants by their feeding. While M. sexta larvae appear to be better adapted to N. attenuata's defenses, some of the elicited responses remain effective defenses against both herbivore species. The regulated genes provide novel insights into larval adaptations to N. attenuata's induced defenses, and represent potential targets for plant-mediated RNAi to falsify hypotheses about the process of adaptation.


Assuntos
Manduca/fisiologia , Mariposas/fisiologia , Nicotiana/parasitologia , Transcrição Gênica , Animais , DNA Complementar/genética , Manduca/genética , Mariposas/genética , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade da Espécie
5.
Arch Insect Biochem Physiol ; 64(1): 19-29, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17167751

RESUMO

One of the well-studied components of the insect gut is the peritrophic matrix (PM). This semipermeable structure primarily functions in digestion, and protection against invasive microorganisms and mechanical damage. We report the cDNA cloning and transcription profiles of a peritrophin-A like gene (designated MdesPERI-A1) in the Hessian fly Mayetiola destructor. The predicted amino acid sequence of MdesPERI-A1 revealed a putative secretion signal peptide at its amino terminus, similarity to peritrophins from other insects including dipterans, and the presence of two chitin binding domains each containing six cysteine residues. Quantitative expression analysis of MdesPERI-A1 mRNA in different larval tissues revealed the transcript to be predominantly present in the midgut (597.9-fold) compared to other tissues assayed including salivary glands and fat bodies. Spatial expression patterns during development showed a peak expression of MdesPERI-A1 in the feeding second-instars (146-fold) and a decline in expression in the pupal and adult stages. Transcription profiling of MdesPERI-A1 during compatible (larvae on susceptible plants) and incompatible (larvae on resistant plants) interactions with wheat revealed a greater level (1.7-fold) of MdesPERI-A1 transcript in larvae on resistant plants in the initial time point examined. However, MdesPERI-A1 expression declined in larvae on resistant plants at the later time points.


Assuntos
Dípteros/genética , Trato Gastrointestinal/metabolismo , Expressão Gênica , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Sequência de Aminoácidos , Análise de Variância , Animais , Sequência de Bases , Quitina/metabolismo , Clonagem Molecular , Dípteros/metabolismo , Trato Gastrointestinal/citologia , Perfilação da Expressão Gênica , Biblioteca Gênica , Larva/metabolismo , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA