Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Sci ; 154(2): 86-96, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246732

RESUMO

Heated tobacco products (HTPs) are marketed worldwide as less harmful alternatives to combustible cigarettes; however, their cytotoxic mechanisms in vascular smooth muscle cells are poorly understood. Ferroptosis is defined as iron-dependent cell death caused by the accumulation of lipid peroxidation products. In this study, the cytotoxic effects of nicotine- and tar-free cigarette smoke extracts (CSE) derived from three types of HTPs and the ferroptosis inducer, erastin, on vascular smooth muscle A7r5 cells were compared. Cigarette smoke from all HTPs was generated according to the following puffing regime: 55 mL, puff volume; 30 s, puff interval; 2 s, puff duration; bell-shaped, puff profile; and no blocking of the ventilation holes. Erastin and CSE decreased mitochondrial metabolic activity and increased lactate dehydrogenase leakage. The cytotoxic effects of erastin were almost completely inhibited by the radical-trapping antioxidant, UAMC-3203; iron chelator, deferoxamine mesylate (DFO); 12/15-lipoxygenase (12/15-LOX) inhibitor, baicalein; and selective 15-LOX inhibitor, ML351. In contrast, CSE-induced cell damage was partially attenuated by UAMC-3203, baicalein, and ML351 but not by DFO. These results suggest that erastin induces ferroptosis via 15-LOX-mediated iron-dependent lipid peroxidation, whereas CSE causes iron-independent cell damage via 15-LOX-mediated lipid peroxidation-dependent and -independent mechanisms.


Assuntos
Antineoplásicos , Fumar Cigarros , Ferroptose , Piperazinas , Produtos do Tabaco , Músculo Liso Vascular , Ferro
2.
J Pharmacol Sci ; 147(3): 223-233, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34507631

RESUMO

The present study compared the properties of mainstream smoke generated from heat-not-burn (HNB) cigarettes and a combustion cigarette (hi-lite™ brand). Three types of cigarette heating devices were used to generate cigarette smoke at different heating temperatures [Ploom S™ (200 °C), glo™ (240 °C), and IQOS™ (300-350 °C)]. Mainstream smoke was generated using the following puffing regimen: volume, 55 mL; duration, 3 s; and interval, 30 s. The rank order of particulate phase (nicotine and tar) amounts trapped on a Cambridge filter was Ploom S < glo < IQOS < hi-lite. Heated cigarette-derived smoke extract (hCSE) from the devices except for Ploom S, and burned CSE (bCSE) decreased mitochondrial metabolic activity (glo < IQOS < hi-lite) in human vascular endothelial cells. Furthermore, the cytotoxicity was reduced by removing the particulate phase from the mainstream smoke. Endothelial nitric oxide synthase activity was reduced by nicotine- and tar-free CSE of IQOS and hi-lite (IQOS < hi-lite), but not Ploom S and glo. These inhibitory effects were diminished by removing the carbonyl compounds from the mainstream smoke. These results indicated that the cytotoxicity of hCSE was lower than that of bCSE in vascular endothelial cells.


Assuntos
Fumar Charutos/efeitos adversos , Células Endoteliais/efeitos dos fármacos , Nicotina/toxicidade , Fumaça/efeitos adversos , Fumaça/análise , Produtos do Tabaco/toxicidade , Células Cultivadas , Células Endoteliais/metabolismo , Temperatura Alta , Humanos , Mitocôndrias/metabolismo , Nicotina/isolamento & purificação , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos
3.
Biol Pharm Bull ; 43(11): 1804-1809, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32879145

RESUMO

Acrolein (ACR), a highly reactive α,ß-unsaturated aldehyde, is a major cytotoxic factor in nicotine- and tar-free cigarette smoke extract (CSE). There are conflicting results regarding endothelial functions despite the fact that both CSE and ACR cause cellular damage. Several lines of evidence indicate that CSE impairs endothelium-derived nitric oxide (NO)-dependent vasodilation by reducing the activity and protein expression of endothelial NO synthase (eNOS), whereas ACR elicits endothelium-dependent vasorelaxation by increasing the production of NO and expression of eNOS. To clarify whether CSE and its cytotoxic factor ACR cause endothelial dysfunction, this study examined the effects of CSE and ACR on human vascular endothelial EA.hy926 cells. CSE and ACR reduced the phosphorylation of eNOS at serine (Ser)1177 and total expression of eNOS. The CSE- and ACR-induced decrease in the phosphorylation and expression of eNOS was counteracted by glutathione (reduced form), an antioxidant. Basal NO production was inhibited by CSE, ACR, NG-nitro-L-arginine methyl ester (a competitive eNOS inhibitor), and nominally Ca2+-free solution supplemented with BAPTA-AM (a membrane permeable Ca2+ chelator). These results indicate that CSE and ACR increase oxidative stress, and reduce NO production by reducing the activity and total protein level of eNOS.


Assuntos
Acroleína/toxicidade , Fumar Cigarros/efeitos adversos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Nicotiana/toxicidade , Produtos do Tabaco/efeitos adversos , Linhagem Celular , Fumar Cigarros/patologia , Endotélio Vascular/citologia , Endotélio Vascular/patologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fumaça/efeitos adversos , Nicotiana/química , Vasodilatação/efeitos dos fármacos
4.
FEBS Lett ; 593(6): 644-651, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30801683

RESUMO

Endothelin (ET)-1 is involved in the vascular system, cell proliferation and apoptosis. ET receptors consist of ET type A receptor (ETA R) and ET type B receptor (ETB R). ETA R and ETB R generally exhibit opposite responses, although many exceptions exist. In the present study, we attempted to identify ETA R- or ETB R-specific binding proteins to understand the differences in ETA R- and ETB R-mediated responses after ET-1 stimulation. The 78-kDa glucose-regulated protein (GRP78) showed a stronger binding affinity towards ETB R than towards ETA R. Moreover, GRP78 overexpression promoted ETB R-mediated ERK activation and GRP78 silencing suppressed ETB R-mediated ERK activation. Furthermore, ETB R can localize GRP78 to the cell periphery. These results suggest that the interaction of ETB R with GRP78 affects ERK activation and GRP78 localization.


Assuntos
Endotelina-1/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Linhagem Celular Tumoral , Clonagem Molecular , Chaperona BiP do Retículo Endoplasmático , Endotelina-1/genética , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HEK293 , Células HeLa , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/genética , Humanos , Melanócitos/citologia , Melanócitos/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Ligação Proteica , Transporte Proteico , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor de Endotelina A/genética , Receptor de Endotelina B/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais
5.
Biochem Biophys Res Commun ; 511(1): 69-72, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30771901

RESUMO

The overexpression of endothelin (ET)-1 or ET receptors (ETRs) is related to initiation and progression of tumor. In cancer cells, ET-1 activates various signaling pathways, including mitogen-activated protein kinase, phosphatidylinositol 3-kinase, protein kinase C through ETRs, although the mechanisms by which ET-1 activates these signaling pathways remain uncertain. Here, we found that ETRs interacted with annexin A2, which is overexpressed in various cancers. Annexin A2 bound to ET type A receptor and ET type B receptor. Upon ET-1 stimulation, serine phosphorylation of annexin A2 increased, while there is no change in tyrosine phosphorylation of annexin A2. On the other hand, annexin A2 silencing suppressed activation of ERK upon ET-1 stimulation. These results suggest that interaction of ETRs and annexin A2 may play important roles in activation of extracellular signal-regulated kinase upon ET-1 stimulation.


Assuntos
Anexina A2/metabolismo , Endotelina-1/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Linhagem Celular Tumoral , Ativação Enzimática , Células HeLa , Humanos , Neoplasias/metabolismo , Fosforilação
6.
Biochem Biophys Res Commun ; 509(4): 988-993, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30654934

RESUMO

Unsaturated carbonyl compounds, such as acrolein (ACR) and methyl vinyl ketone (MVK), are environmental pollutants, and are contained in smoke, automobile exhaust, and heated oil. We have previously reported that major cytotoxic factors in the gas phase of cigarette smoke are ACR and MVK. ACR and MVK induce cell damage by reactive oxygen species generation via protein kinase C and NADPH oxidases, and antioxidants, such as glutathione (GSH) and N-acetylcysteine (NAC), can effectively suppress their cytotoxic activities. In this study, we attempted to elucidate the molecular mechanism(s) for suppression of ACR- and MVK-induced cytotoxic activities by these antioxidants. GSH, NAC, L- and D-cysteines completely suppressed cell damage induced by gas phase extract of cigarette smoke. The results of HPLC and mass spectrometry showed that GSH and NAC directly reacted with ACR and MVK. Cysteines and cysteine derivatives suppressed ACR-induced GAPDH carbonylation, a representative protein for carbonylation. The current results suggest that GSH, NAC, and cysteines directly reacted with ACR and MVK, and suppressed these unsaturated carbonyl compounds-induced cell damage by inhibition of protein carbonylation.


Assuntos
Cisteína/farmacologia , Glutationa/farmacologia , Fumaça , Produtos do Tabaco/toxicidade , Acroleína/toxicidade , Aldeídos/toxicidade , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão , Cisteína/análogos & derivados , Poluentes Ambientais/toxicidade , Gases , Cetonas/toxicidade , Espectrometria de Massas , Carbonilação Proteica/efeitos dos fármacos
7.
Sci Rep ; 7(1): 8304, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28814727

RESUMO

The extent to which defective innate immune responses contribute to chronic obstructive pulmonary disease (COPD) is not fully understood. Pulmonary surfactant protein A (SP-A) plays an important role in regulating innate immunity in the lungs. In this study, we hypothesised that cigarette smoke (CS) and its component acrolein might influence pulmonary innate immunity by affecting the function of SP-A. Indeed, acrolein-modified SP-A was detected in the lungs of mice exposed to CS for 1 week. To further confirm this finding, recombinant human SP-A (hSP-A) was incubated with CS extract (CSE) or acrolein and then analysed by western blotting and nanoscale liquid chromatography-matrix-assisted laser desorption/ionisation time-of-flight tandem mass spectrometry. These analyses revealed that CSE and acrolein induced hSP-A oligomerisation and that acrolein induced the modification of six residues in hSP-A: His39, His116, Cys155, Lys180, Lys221, and Cys224. These modifications had significant effects on the innate immune functions of hSP-A. CSE- or acrolein-induced modification of hSP-A significantly decreased hSP-A's ability to inhibit bacterial growth and to enhance macrophage phagocytosis. These findings suggest that CS-induced structural and functional defects in SP-A contribute to the dysfunctional innate immune responses observed in the lung during cigarette smoking.


Assuntos
Acroleína/química , Nicotiana/química , Proteína A Associada a Surfactante Pulmonar/química , Proteína A Associada a Surfactante Pulmonar/metabolismo , Aldeídos/química , Animais , Células CHO , Fumar Cigarros/efeitos adversos , Cricetulus , Feminino , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Modelos Biológicos , Estrutura Molecular , Fagocitose , Conformação Proteica , Células RAW 264.7 , Compostos de Sulfidrila/química
8.
J Biosci Bioeng ; 124(6): 680-684, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28751126

RESUMO

The unsaturated carbonyl compounds are known as the environmental pollutants. Acrolein (ACR) and methyl vinyl ketone (MVK) are representative unsaturated carbonyl compounds. ACR is contained in smoke, automobile exhaust, industrial waste, and several foods. MVK is widely used as the industrial chemical. Although ACR and MVK are highly toxic, the molecular mechanism for their cytotoxicity has been unclear. We have previously reported that ACR and MVK are major cytotoxic compounds in the gas phase of cigarette smoke, and protein kinase C (PKC) inhibitor and NADPH oxidases inhibitor partially rescued cells from ACR- or MVK-induced cell death (Noya et al., Toxicology, 314, 1-10, 2013). PKC translocation, which is hallmark for PKC activation, and cell damage were induced by treatment of cultured cells with ACR or MVK. Intracellular Ca2+ chelator completely suppressed ACR- or MVK-induced PKC translocation to the cell membrane and cell damage, while extracellular Ca2+ chelator had no effects on ACR- and MVK-induced cytotoxicity. These results suggest that intracellular Ca2+ is an essential factor for cell damage caused by both PKC-dependent and PKC-independent pathways, and mobilization of Ca2+ from intracellular Ca2+ stores is induced by ACR or MVK.


Assuntos
Acroleína/toxicidade , Apoptose/efeitos dos fármacos , Butanonas/toxicidade , Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/patologia , Espaço Intracelular/metabolismo , Fumaça/análise , Acroleína/química , Animais , Butanonas/química , Cálcio/deficiência , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , Espaço Intracelular/efeitos dos fármacos , NADPH Oxidases/antagonistas & inibidores , Proteína Quinase C/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos , Nicotiana/química
9.
TH Open ; 1(2): e122-e129, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31249917

RESUMO

The results of studies that were performed to determine whether cigarette smoking affects platelet function have been controversial, and the effects of nicotine- and tar-free cigarette smoke extract (CSE) on platelet function remain to be determined. The aim of this study was to determine the effect of CSE on platelet aggregation and to clarify the mechanism by which CSE affects platelet function. CSE inhibited murine platelet aggregation induced by 9,11-dideoxy-9α,11α-methanoepoxy-prosta-5Z,13E-dien-1-oic acid (U-46619), a thromboxane (TX) A 2 receptor agonist, and that induced by collagen with respective IC 50 values of 1.05 ± 0.14% and 1.34 ± 0.19%. A similar inhibitory action of CSE was also observed in human platelets. CSE inhibited arachidonic acid-induced TXA 2 production in murine platelets with an IC 50 value of 7.32 ± 2.00%. Accordingly, the inhibitory effect of CSE on collagen-induced aggregation was significantly blunted in platelets lacking the TXA 2 receptor compared with the inhibitory effect in control platelets. In contrast, the antiplatelet effects of CSE in platelets lacking each inhibitory prostanoid receptor, prostaglandin (PG) I 2 receptor and PGE 2 receptor subtypes EP 2 and EP 4 , were not significantly different from the effects in respective control platelets. Among the enzymes responsible for TXA 2 production in platelets, the activity of cyclooxygenase (COX)-1 was inhibited by CSE with an IC 50 value of 1.07 ± 0.15% in an uncompetitive manner. In contrast, the activity of TX synthase was enhanced by CSE. The results indicate that CSE inhibits COX-1 activity and thereby decreases TXA 2 production in platelets, leading to inhibition of platelet aggregation.

10.
Biol Pharm Bull ; 39(6): 898-902, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27251490

RESUMO

The gas phase of cigarette smoke is important from the viewpoint of human health, because it can pass through alveolar epithelium and enter the circulation. There is no standard method for the preparation of a gas phase extract of cigarette smoke (CSE), although CSE is widely used for research instead of whole cigarette smoke. We have established a standard method for the preparation of CSE. One cigarette per trial is continuously combusted under a reduced pressure generated by an aspiration pump with a velocity of 1.050 L/min: the main stream of the smoke is passed through a Cambridge filter to remove tar, and subsequently, bubbled through a glass ball filter (pore size, 20-30 µm) into 15 mL of phosphate-buffered saline (PBS). To express the concentration of CSE, a virtual tar concentration is introduced, which is calculated assuming that tar trapped on the Cambridge filter is dissolved in the PBS. CSEs prepared from smaller numbers of cigarettes (original virtual tar concentration≤15 mg/mL) show similar concentration-response curves for cytotoxicity versus virtual tar concentrations. CSEs prepared from various brands of cigarettes and by different smoking regimes (continuous and puff smoking) show similar cytotoxic potency if the virtual tar concentrations are the same. In conclusion, using the standardized method for CSE preparation in combination with the virtual tar concentration, it becomes possible to simply and rapidly prepare standard CSEs with defined concentrations from any brand of cigarettes, which are toxicologically equivalent to CSE prepared by puff smoking.


Assuntos
Nicotiana , Fumaça/análise , Gases/análise , Humanos , Fumar , Alcatrões/análise , Produtos do Tabaco
11.
Biol Pharm Bull ; 39(6): 909-14, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27251492

RESUMO

Cigarette mainstream smoke is composed of gas and tar phases and contains >4000 chemical constituents, including nicotine and tar. The substances in the gas phase but not in the tar phase can pass through the airway epithelial barrier, enter the systemic circulation via the pulmonary circulation, and increase systemic oxidative damage, leading to the development of cigarette smoking-related diseases such as atherosclerosis. Recently, we identified some stable carbonyl compounds, including acrolein (ACR) and methyl vinyl ketone (MVK), as major cytotoxic factors in nicotine- and tar-free cigarette smoke extract (CSE) of the gas phase. CSE, ACR, and MVK induce protein kinase C (PKC)-dependent activation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and subsequent generation of reactive oxygen species (ROS) via NOX, causing plasma membrane damage and cell apoptosis. CSE, ACR, and MVK also trigger carbonylation of PKC, which is an irreversible oxidative modification. Cell damage and PKC carbonylation in response to treatment with CSE, ACR, or MVK are abolished by thiol-containing antioxidants such as N-acetyl-L-cysteine and reduced glutathione. Thus pharmacological modulation of PKC and NOX activities and the trapping of ROS are potential strategies for the prevention of diseases related to cigarette smoking.


Assuntos
Nicotiana , Fumaça/efeitos adversos , Fumaça/análise , Produtos do Tabaco , Acroleína/toxicidade , Animais , Butanonas/toxicidade , Linhagem Celular , Gases/análise , Humanos , NADPH Oxidases/metabolismo , Carbonilação Proteica , Proteína Quinase C/metabolismo
12.
Br J Pharmacol ; 173(6): 1018-32, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26660861

RESUMO

BACKGROUND AND PURPOSE: Endothelin-1 (ET-1) reduces insulin-stimulated glucose uptake in skeletal muscle, inducing insulin resistance. Here, we have determined the molecular mechanisms underlying negative regulation by ET-1 of insulin signalling. EXPERIMENTAL APPROACH: We used the rat L6 skeletal muscle cells fully differentiated into myotubes. Changes in the phosphorylation of Akt was assessed by Western blotting. Effects of ET-1 on insulin-stimulated glucose uptake was assessed with [(3) H]-2-deoxy-d-glucose ([(3) H]2-DG). The C-terminus region of GPCR kinase 2 (GRK2-ct), a dominant negative GRK2, was overexpressed in L6 cells using adenovirus-mediated gene transfer. GRK2 expression was suppressed by transfection of the corresponding short-interfering RNA (siRNA). KEY RESULTS: In L6 myotubes, insulin elicited sustained Akt phosphorylation at Thr(308) and Ser(473) , which was suppressed by ET-1. The inhibitory effects of ET-1 were prevented by treatment with a selective ETA receptor antagonist and a Gq protein inhibitor, overexpression of GRK2-ct and knockdown of GRK2. Insulin increased [(3) H]2-DG uptake rate in a concentration-dependent manner. ET-1 noncompetitively antagonized insulin-stimulated [(3) H]2-DG uptake. Blockade of ETA receptors, overexpression of GRK2-ct and knockdown of GRK2 prevented the ET-1-induced suppression of insulin-stimulated [(3) H]2-DG uptake. In L6 myotubes overexpressing FLAG-tagged GRK2, ET-1 facilitated the interaction of endogenous Akt with FLAG-GRK2. CONCLUSIONS AND IMPLICATIONS: Activation of ETA receptors with ET-1 suppressed insulin-induced Akt phosphorylation at Thr(308) and Ser(473) and [(3) H]2-DG uptake in a GRK2-dependent manner in skeletal muscle cells. These findings suggest that ETA receptors and GRK2 are potential targets for overcoming insulin resistance.


Assuntos
Endotelina-1/farmacologia , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Glucose/metabolismo , Insulina/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Quinase 2 de Receptor Acoplado a Proteína G/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citologia , Proteína MyoD/genética , Mioblastos/citologia , Miogenina/genética , Fosforilação , RNA Mensageiro/metabolismo , RNA Ribossômico 18S/genética , Ratos
13.
Lab Invest ; 95(6): 625-34, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25915723

RESUMO

Chronic obstructive pulmonary disease (COPD) is a disease common in elderly people, characterized by progressive destruction of lung parenchyma and chronic inflammation of the airways. The pathogenesis of COPD remains unclear, but recent studies suggest that oxidative stress-induced apoptosis in alveolar cells contributes to emphysematous lung destruction. The proteasome is a multicatalytic enzyme complex that plays a critical role in proteostasis by rapidly destroying misfolded and modified proteins generated by oxidative and other stresses. Proteasome activity decreases with aging in many organs including lungs, and an age-related decline in proteasomal function has been implicated in various age-related pathologies. However, the role of the proteasome system in the pathogenesis of COPD has not been investigated. Recently, we have established a transgenic (Tg) mouse model with decreased proteasomal chymotrypsin-like activity, showing age-related phenotypes. Using this model, we demonstrate here that decreased proteasomal function accelerates cigarette smoke (CS)-induced pulmonary emphysema. CS-exposed Tg mice showed remarkable airspace enlargement and increased foci of inflammation compared with wild-type controls. Importantly, apoptotic cells were found in the alveolar walls of the affected lungs. Impaired proteasomal activity also enhanced apoptosis in cigarette smoke extract (CSE)-exposed fibroblastic cells derived from mice and humans in vitro. Notably, aggresome formation and prominent nuclear translocation of apoptosis-inducing factor were observed in CSE-exposed fibroblastic cells isolated from Tg mice. Collective evidence suggests that CS exposure and impaired proteasomal activity coordinately enhance apoptotic cell death in the alveolar walls that may be involved in the development and progression of emphysema in susceptible individuals such as the elderly.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/metabolismo , Fumaça/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Enfisema Pulmonar/patologia , Nicotiana
14.
PLoS One ; 9(9): e107856, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25229830

RESUMO

Cigarette smoke consists of tar and gas phase: the latter is toxicologically important because it can pass through lung alveolar epithelium to enter the circulation. Here we attempt to establish a standard method for preparation of gas phase extract of cigarette smoke (CSE). CSE was prepared by continuously sucking cigarette smoke through a Cambridge filter to remove tar, followed by bubbling it into phosphate-buffered saline (PBS). An increase in dry weight of the filter was defined as tar weight. Characteristically, concentrations of CSEs were represented as virtual tar concentrations, assuming that tar on the filter was dissolved in PBS. CSEs prepared from smaller numbers of cigarettes (original tar concentrations ≤ 15 mg/ml) showed similar concentration-response curves for cytotoxicity versus virtual tar concentrations, but with CSEs from larger numbers (tar ≥ 20 mg/ml), the curves were shifted rightward. Accordingly, the cytotoxic activity was detected in PBS of the second reservoir downstream of the first one with larger numbers of cigarettes. CSEs prepared from various cigarette brands showed comparable concentration-response curves for cytotoxicity. Two types of CSEs prepared by continuous and puff smoking protocols were similar regarding concentration-response curves for cytotoxicity, pharmacology of their cytotoxicity, and concentrations of cytotoxic compounds. These data show that concentrations of CSEs expressed by virtual tar concentrations can be a reference value to normalize their cytotoxicity, irrespective of numbers of combusted cigarettes, cigarette brands and smoking protocols, if original tar concentrations are ≤15 mg/ml.


Assuntos
Citotoxinas/isolamento & purificação , Filtração/normas , Gases/química , Fumaça/análise , Produtos do Tabaco/análise , Animais , Soluções Tampão , Linhagem Celular Tumoral , Citotoxinas/toxicidade , Vidro/química , Humanos , Hidrocarbonetos/isolamento & purificação , Fosfatos/química , Ratos , Padrões de Referência , Reprodutibilidade dos Testes , Fumaça/efeitos adversos , Temperatura , Fatores de Tempo
15.
Life Sci ; 104(1-2): 24-31, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24735959

RESUMO

AIMS: Endothelin (ET) system plays a critical role in the development of insulin resistance and type 2 diabetes. In skeletal muscle, differentiation of myoblasts to myotubes is accompanied by the development of insulin sensitivity. Activation of extracellular signal-regulated kinase (ERK) 1/2 inhibits the differentiation of myoblasts, leading to insulin resistance. Although ET receptor (ETR) stimulation generally activates ERK1/2, the mechanism for ETR-mediated ERK1/2 activation in skeletal muscle is unknown. The purpose of this study was to determine the signal transduction pathway involved in ET-1-stimulated ERK1/2 phosphorylation in L6 myoblasts derived from rat skeletal muscle. MAIN METHODS: Changes in phosphorylation levels of ERK1/2 following stimulation with ET-1 were analyzed by Western blot in L6 myoblasts. To inhibit receptor internalization, dominant-negative dynamin (K44A) was overexpressed in L6 myoblasts using adenovirus-mediated gene transfer. KEY FINDINGS: ET-1 induced phosphorylation of ERK1/2 in L6 myoblasts. The ERK1/2 phosphorylation was abolished by BQ123 (a selective ET type A receptor (ETAR) antagonist), YM-254890 (a Gαq/11 protein inhibitor), and AG370 (a platelet-derived growth factor receptor (PDGFR) kinase inhibitor), while U-73122 (a phospholipase C (PLC) inhibitor) was less potent. The ERK1/2 phosphorylation was inhibited by overexpression of dominant-negative dynamin (K44A). These results suggest that ETAR stimulation induces ERK1/2 phosphorylation in L6 myoblasts through Gq/11 protein-dependent, PLC-independent PDGFR transactivation which requires dynamin-dependent ETAR internalization. SIGNIFICANCE: Because activation of ERK1/2 is considered to inhibit differentiation of myoblasts with the development of insulin sensitivity, the ETAR-mediated PDGFR transactivation and subsequent ERK1/2 activation play an important role in ET-1-induced insulin resistance.


Assuntos
Endotelina-1/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Mioblastos/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Ativação Transcricional , Animais , Cálcio/metabolismo , Linhagem Celular , Dinaminas/genética , Regulação Enzimológica da Expressão Gênica , Técnicas de Transferência de Genes , Genes Dominantes , Insulina/metabolismo , Resistência à Insulina , Músculo Esquelético/metabolismo , Fosforilação , Ratos , Receptor de Endotelina A/metabolismo , Transdução de Sinais
16.
J Pharmacol Sci ; 123(2): 85-101, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24077109

RESUMO

The endothelin (ET) system consists of two G protein coupled-receptors (GPCRs), ET type A receptor (ETAR) and ET type B receptor (ETBR), and three endogenous ligands, ET-1, ET-2, and ET-3. Stimulation of ETRs with ET-1 induces an increase in intracellular Ca(2+) concentration that is involved in a diverse array of physiological and pathophysiological processes, including vasoconstriction, and cell proliferation. Store-operated Ca(2+) entry and receptor-operated Ca(2+) entry triggered by activation of ETRs are regulated or modulated by endoplasmic reticulum Ca(2+) sensor (stromal interaction molecule 1) and voltage-independent cation channels (transient receptor potential canonical channels and Orai1). The ET-1-induced Ca(2+) mobilization results from activation of heterotrimeric G proteins by ETRs. In contrast, GPCR biology including modulation of receptor function and trafficking is regulated by a variety of GPCR interacting proteins (GIPs) that generally interact with the C-terminal domain of GPCRs. The ETR signaling is also regulated by GIPs such as Jun activation domain-binding protein 1. This review focuses on the regulatory mechanisms of the ETR signaling with special attention to the components involved in Ca(2+) signaling and to GIPs in the signal transduction, modification, and degradation of ETRs.


Assuntos
Endotelina-1/fisiologia , Endotelina-2/fisiologia , Endotelina-3/fisiologia , Receptor de Endotelina A/fisiologia , Receptor de Endotelina B/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Animais , Complexo do Signalossomo COP9 , Cálcio/metabolismo , Canais de Cálcio/fisiologia , Sinalização do Cálcio/fisiologia , Proliferação de Células , Retículo Endoplasmático , Proteínas de Ligação ao GTP/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Ligantes , Proteínas de Membrana/fisiologia , Proteínas de Neoplasias/fisiologia , Proteína ORAI1 , Peptídeo Hidrolases/fisiologia , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Molécula 1 de Interação Estromal , Canais de Cátion TRPC/fisiologia , Vasoconstrição
17.
Toxicology ; 314(1): 1-10, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23981515

RESUMO

Smoking is a major risk factor for atherosclerotic vascular diseases, but the mechanism for its genesis is unknown. We have recently shown that the gas phase of cigarette smoke (nicotine- and tar-free cigarette smoke extract; CSE) likely to reach the systemic circulation contains stable substances which cause cytotoxicity like plasma membrane damage and cell death in cultured cells, and also that the plasma membrane damage is caused through sequential activation of protein kinase C (PKC) and NADPH oxidase (NOX) and the resulting generation of reactive oxygen species (PKC/NOX-dependent mechanism), whereas cell death is caused through PKC/NOX-dependent and -independent mechanisms. To identify these stable substances, the CSE was prepared by passing the main-stream smoke of 10 cigarettes through a Cambridge glass fiber filter, trapping of the smoke in a vessel cooled at -80°C, and subsequent dissolution in 10ml of water. The CSE was fractionated into nine fractions using reversed-phase HPLC, and each fraction was screened for cytotoxicity in cultured cells, using propidium iodide uptake assay for cell membrane damage and MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] reduction assay for cell viability. The cytotoxicity was positive in two of the nine fractions (Fr2 and Fr5). After extraction of the active fractions into dichloromethane, GC/MS analysis identified 2-cyclopenten-1-one (CPO) in Fr5 but none in Fr2. After derivatization of the active fractions with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride, GC/MS analysis identified acrolein, acetone and propionaldehyde in Fr2, and methyl vinyl ketone (MVK) in Fr5. After 4-h incubation, authentic acrolein and MVK induced concentration-dependent cytotoxicity with EC50 values of 75.9±8.2 and 47.0±8.0µM (mean±SEM; n=3), respectively, whereas acetone, propionaldehyde and CPO were without effect. However, after 24-h incubation, CPO induced concentration-dependent cytotoxicity with an EC50 value of 264.0±16.9µM (n=3). The concentrations of acrolein, MVK and CPO in the CSE were 3368±334, 2429±123 and 392.9±31.8µM (n=4), respectively, which were higher than the cytotoxic concentrations. The cytotoxicity of acrolein and MVK consisted of plasma membrane damage and decreased cell viability: the plasma membrane damage was totally prevented by treatment with an inhibitor of PKC or NOX, whereas the decreased cell viability was only partially prevented by these inhibitors. The cytotoxicity of CPO consisted only of decreased cell viability, which was totally resistant to these inhibitors. These results show that acrolein and MVK are responsible for the acute cytotoxicity of the CSE through PKC/NOX-dependent and -independent mechanisms, whereas CPO is responsible for the delayed cytotoxicity of the CSE through a PKC/NOX-independent mechanism.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Poluição por Fumaça de Tabaco/efeitos adversos , Poluição por Fumaça de Tabaco/análise , Butanonas/química , Butanonas/toxicidade , Linhagem Celular Tumoral , Sistema Livre de Células , Cromatografia Líquida de Alta Pressão , Ciclopentanos/química , Ciclopentanos/toxicidade , Interpretação Estatística de Dados , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Hidroxilaminas , Indicadores e Reagentes , Espectrometria de Massas , NADPH Oxidases/antagonistas & inibidores , Nicotina/química , Proteína Quinase C/antagonistas & inibidores , Alcatrões/farmacologia
18.
J Pharmacol Sci ; 120(4): 310-4, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23149578

RESUMO

Nicotine- and tar-free cigarette smoke extract (CSE) is reported to induce cell damage via activation of protein kinase C (PKC) and NADPH oxidase (NOX) in rat C6 glioma cells. Here we determined PKC isozyme(s) activated by CSE and their activation mechanism. In C6 glioma cells, mRNAs for PKCα, PKCδ, PKCε, and PKCι were expressed. CSE triggered translocation of PKCα and PKCε to plasma membrane. CSE-induced cell damage and PKC translocation were inhibited by chelating intracellular Ca(2+) but not extracellular Ca(2+). These results suggest that CSE induces cell damage through intracellular Ca(2+)-dependent activation of PKCα and PKCε and subsequent NOX activation.


Assuntos
Glioma/enzimologia , Glioma/patologia , Nicotina/efeitos adversos , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-épsilon/metabolismo , Fumaça/efeitos adversos , Produtos do Tabaco/efeitos adversos , Animais , Cálcio/metabolismo , Cálcio/fisiologia , Membrana Celular/enzimologia , Ativação Enzimática , NADPH Oxidases/metabolismo , Ratos , Espécies Reativas de Oxigênio , Alcatrões , Células Tumorais Cultivadas
19.
Biochem Biophys Res Commun ; 428(2): 252-8, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23068106

RESUMO

Stromal interaction molecule 1 (STIM1) is the endoplasmic reticulum (ER) Ca(2+) sensor to control ER Ca(2+) levels. A recent study has shown that STIM1L, a new splice variant of STIM1, is expressed in various tissues of rodent and in human skeletal muscle, and that the interaction of STIM1L with actin filament allows rapid activation of store-operated Ca(2+) entry (SOCE) mediated through Orai1 channels. Here, we characterize mRNA expression and function of human STIM1 and STIM1L, and compare their binding property to Orai1 functioning as store-operated Ca(2+) channels (SOCCs), and TRPC3 (transient receptor potential canonical 3) and TRPC6 channels functioning as endothelin type A receptor (ET(A)R)-operated Ca(2+) channels (ROCCs). Although mRNA for STIM1 was ubiquitously expressed in human tissues, STIM1L was detected only in skeletal muscle. STIM1L augmented thapsigargin- and endothelin-1-induced SOCE more strongly than STIM1 in human embryonic kidney 293 cells stably expressing ET(A)R, whereas, it tends to suppress ET(A)R-operated Ca(2+) entry (ROCE) via TRPC3 and TRPC6 more strongly than STIM1. Coimmunoprecipitation experiments have revealed that when compared with STIM1, STIM1L binds more abundantly to Orai1 and also to TRPC3 and TRPC6. These results suggest that the higher binding capacity of STIM1L to SOCCs and ROCCs plays an important role in the regulation of Ca(2+) signaling such as the augmentation of SOCE via Orai1 and the inhibition of ROCE via TRPC3 and TRPC6.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Canais de Cátion TRPC/metabolismo , Cálcio/metabolismo , Ventrículos Cerebrais/metabolismo , Feminino , Células HEK293 , Células HeLa , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Proteínas de Membrana/genética , Músculo Esquelético/metabolismo , Proteínas de Neoplasias/genética , Proteína ORAI1 , Placenta/metabolismo , Gravidez , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Molécula 1 de Interação Estromal , Canal de Cátion TRPC6
20.
J Pharmacol Sci ; 118(2): 275-87, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22302021

RESUMO

We examined cytotoxic effects of nicotine/tar-free cigarette smoke extract (CSE) on C6 glioma cells. The CSE induced plasma membrane damage (determined by lactate dehydrogenase leakage and propidium iodide uptake) and cell apoptosis {determined by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] reduction activity and DNA fragmentation}. The cytotoxic activity decayed with a half-life of approximately 2 h at 37°C, and it was abolished by N-acetyl-L-cysteine and reduced glutathione. The membrane damage was prevented by catalase and edaravone (a scavenger of (•)OH) but not by superoxide dismutase, indicating involvement of (•)OH. In contrast, the CSE-induced cell apoptosis was resistant to edaravone and induced by authentic H(2)O(2) or O(2)(-) generated by the xanthine/xanthine oxidase system, indicating involvement of H(2)O(2) or O(2)(-) in cell apoptosis. Diphenyleneiodonium [NADPH oxidase (NOX) inhibitor] and bisindolylmaleimide I [BIS I, protein kinase C (PKC) inhibitor] abolished membrane damage, whereas they partially inhibited apoptosis. These results demonstrate that 1) a stable component(s) in the CSE activates PKC, which stimulates NOX to generate reactive oxygen species (ROS), causing membrane damage and apoptosis; 2) different ROS are responsible for membrane damage and apoptosis; and 3) part of the apoptosis is caused by oxidants independently of PKC and NOX.


Assuntos
Glioma/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fumar/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/patologia , Meia-Vida , Peróxido de Hidrogênio/metabolismo , Oxidantes/metabolismo , Oxigênio/metabolismo , Proteína Quinase C/metabolismo , Ratos , Ratos Wistar , Nicotiana/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA