Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(2): 1058-1067, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38181450

RESUMO

mRNA-based therapeutics are revolutionizing the landscape of medical interventions. However, the short half-life of mRNA and transient protein expression often limits its therapeutic potential, demanding high treatment doses or repeated administrations. Self-replicating RNA (RepRNA)-based treatments could offer enhanced protein production and reduce the required dosage. Here, we developed polymeric micelles based on flexible poly(ethylene glycol)-poly(glycerol) (PEG-PG) block copolymers modified with phenylalanine (Phe) moieties via biodegradable ester bonds for the efficient delivery of RepRNA. These polymers successfully encapsulated RepRNA into sub-100 nm micelles assisted by the hydrophobicity of the Phe moieties and their ability to π-π stack with the bases in RepRNA. The micelles made from Phe-modified PEG-PG (PEG-PG(Phe)) effectively maintained the integrity of the loaded RepRNA in RNase-rich serum conditions. Once taken up by cells, the micelles triggered a pH-responsive membrane disruption, promoted by the strong protonation of the amino groups at endosomal pH, thereby delivering the RepRNA to the cytosol. The system induced strong protein expression in vitro and outperformed commercial transfecting reagents in vivo, where it resulted in enhanced and long-lasting protein expression.


Assuntos
Micelas , Fenilalanina , RNA , Linhagem Celular Tumoral , Concentração de Íons de Hidrogênio , Polímeros/química , Polietilenoglicóis/química , RNA Mensageiro , Portadores de Fármacos/química
2.
Adv Healthc Mater ; 12(15): e2202688, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36785927

RESUMO

Messenger RNA (mRNA)-based therapies offer great promise for the treatment of a variety of diseases. In 2020, two FDA approvals of mRNA-based vaccines have elevated mRNA vaccines to global recognition. However, the therapeutic capabilities of mRNA extend far beyond vaccines against infectious diseases. They hold potential for cancer vaccines, protein replacement therapies, gene editing therapies, and immunotherapies. For realizing such advanced therapies, it is crucial to develop effective carrier systems. Recent advances in materials science have led to the development of promising nonviral mRNA delivery systems. In comparison to other carriers like lipid nanoparticles, polymer-based delivery systems often receive less attention, despite their unique ability to carefully tune their chemical features to promote mRNA protection, their favorable pharmacokinetics, and their potential for targeting delivery. In this review, the central features of polymer-based systems for mRNA delivery highlighting the molecular design criteria, stability, and biodistribution are discussed. Finally, the role of targeting ligands for the future of RNA therapies is analyzed.


Assuntos
Vacinas Anticâncer , Nanopartículas , Polímeros/química , RNA Mensageiro/genética , RNA Mensageiro/uso terapêutico , RNA Mensageiro/metabolismo , Distribuição Tecidual , Nanopartículas/química , Terapia Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA