Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Syst Biol ; 70(6): 1123-1144, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33783539

RESUMO

The use of high-throughput sequencing technologies to produce genome-scale data sets was expected to settle some long-standing controversies across the Tree of Life, particularly in areas where short branches occur at deep timescales. Instead, these data sets have often yielded many well-supported but conflicting topologies, and highly variable gene-tree distributions. A variety of branch-support metrics beyond the nonparametric bootstrap are now available to assess how robust a phylogenetic hypothesis may be, as well as new methods to quantify gene-tree discordance. We applied multiple branch-support metrics to a study of an ancient group of marine fishes (Teleostei: Pelagiaria) whose interfamilial relationships have proven difficult to resolve due to a rapid accumulation of lineages very early in its history. We analyzed hundreds of loci including published ultraconserved elements and newly generated exonic data along with their flanking regions to represent all 16 extant families for more than 150 out of 284 valid species in the group. Branch support was typically lower at inter- than intra-familial relationships regardless of the type of marker used. Several nodes that were highly supported with bootstrap had a very low site and gene-tree concordance, revealing underlying conflict. Despite this conflict, we were able to identify four consistent interfamilial clades, each comprised of two or three families. Combining exons with their flanking regions also produced increased branch lengths at the deep branches of the pelagiarian tree. Our results demonstrate the limitations of employing current metrics of branch support and species-tree estimation when assessing the confidence of ancient evolutionary radiations and emphasize the necessity to embrace alternative measurements to explore phylogenetic uncertainty and discordance in phylogenomic data sets.[Concatenation; exons; introns; phylogenomics; species-tree methods; target capture.].


Assuntos
Benchmarking , Atum , Animais , Evolução Biológica , Peixes , Humanos , Filogenia
2.
Proc Biol Sci ; 286(1910): 20191502, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31506051

RESUMO

The fish clade Pelagiaria, which includes tunas as its most famous members, evolved remarkable morphological and ecological variety in a setting not generally considered conducive to diversification: the open ocean. Relationships within Pelagiaria have proven elusive due to short internodes subtending major lineages suggestive of rapid early divergences. Using a novel sequence dataset of over 1000 ultraconserved DNA elements (UCEs) for 94 of the 286 species of Pelagiaria (more than 70% of genera), we provide a time-calibrated phylogeny for this widely distributed clade. Some inferred relationships have clear precedents (e.g. the monophyly of 'core' Stromateoidei, and a clade comprising 'Gempylidae' and Trichiuridae), but others are unexpected despite strong support (e.g. Chiasmodontidae + Tetragonurus). Relaxed molecular clock analysis using node-based fossil calibrations estimates a latest Cretaceous origin for Pelagiaria, with crown-group families restricted to the Cenozoic. Estimated mean speciation rates decline from the origin of the group in the latest Cretaceous, although credible intervals for root and tip rates are broad and overlap in most cases, and there is higher-than-expected partitioning of body shape diversity (measured as fineness ratio) between clades concentrated during the Palaeocene-Eocene. By contrast, more direct measures of ecology show either no substantial deviation from a null model of diversification (diet) or patterns consistent with evolutionary constraint or high rates of recent change (depth habitat). Collectively, these results indicate a mosaic model of diversification. Pelagiarians show high morphological disparity and modest species richness compared to better-studied fish radiations in contrasting environments. However, this pattern is also apparent in other clades in open-ocean or deep-sea habitats, and suggests that comparative study of such groups might provide a more inclusive model of the evolution of diversity in fishes.


Assuntos
Peixes , Filogenia , Animais , Biodiversidade , Evolução Biológica , Ecossistema , Fósseis , Especiação Genética , Oceanos e Mares , Atum
3.
BMC Genomics ; 17: 719, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27604148

RESUMO

BACKGROUND: The mitochondrial (mt) genome has been used as an effective tool for phylogenetic and population genetic analyses in vertebrates. However, the structure and variability of the vertebrate mt genome are not well understood. A potential strategy for improving our understanding is to conduct a comprehensive comparative study of large mt genome data. The aim of this study was to characterize the structure and variability of the fish mt genome through comparative analysis of large datasets. RESULTS: An analysis of the secondary structure of proteins for 250 fish species (248 ray-finned and 2 cartilaginous fishes) illustrated that cytochrome c oxidase subunits (COI, COII, and COIII) and a cytochrome bc1 complex subunit (Cyt b) had substantial amino acid conservation. Among the four proteins, COI was the most conserved, as more than half of all amino acid sites were invariable among the 250 species. Our models identified 43 and 58 stems within 12S rRNA and 16S rRNA, respectively, with larger numbers than proposed previously for vertebrates. The models also identified 149 and 319 invariable sites in 12S rRNA and 16S rRNA, respectively, in all fishes. In particular, the present result verified that a region corresponding to the peptidyl transferase center in prokaryotic 23S rRNA, which is homologous to mt 16S rRNA, is also conserved in fish mt 16S rRNA. Concerning the gene order, we found 35 variations (in 32 families) that deviated from the common gene order in vertebrates. These gene rearrangements were mostly observed in the area spanning the ND5 gene to the control region as well as two tRNA gene cluster regions (IQM and WANCY regions). Although many of such gene rearrangements were unique to a specific taxon, some were shared polyphyletically between distantly related species. CONCLUSIONS: Through a large-scale comparative analysis of 250 fish species mt genomes, we elucidated various structural aspects of the fish mt genome and the encoded genes. The present results will be important for understanding functions of the mt genome and developing programs for nucleotide sequence analysis. This study demonstrated the significance of extensive comparisons for understanding the structure of the mt genome.


Assuntos
Peixes/classificação , Peixes/genética , Genoma Mitocondrial , Mitocôndrias/genética , Animais , Bases de Dados Genéticas , Evolução Molecular , Proteínas de Peixes/química , Proteínas de Peixes/genética , Ordem dos Genes , Rearranjo Gênico , Tamanho do Genoma , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Modelos Moleculares , Conformação Molecular , Filogenia , RNA/química , RNA/genética , RNA Mitocondrial , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA de Transferência/química , RNA de Transferência/genética
4.
Mol Phylogenet Evol ; 85: 97-116, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25698355

RESUMO

Cyprininae is the largest subfamily (>1300 species) of the family Cyprinidae and contains more polyploid species (∼400) than any other group of fishes. We examined the phylogenetic relationships of the Cyprininae based on extensive taxon, geographical, and genomic sampling of the taxa, using both mitochondrial and nuclear genes to address the phylogenetic challenges posed by polyploidy. Four datasets were analyzed in this study: two mitochondrial gene datasets (465 and 791 taxa, 5604bp), a mitogenome dataset (85 taxa, 14,771bp), and a cloned nuclear RAG1 dataset (97 taxa, 1497bp). Based on resulting trees, the subfamily Cyprininae was subdivided into 11 tribes: Probarbini (new; Probarbus+Catlocarpio), Labeonini Bleeker, 1859 (Labeo & allies), Torini Karaman, 1971 (Tor, Labeobarbus & allies), Smiliogastrini Bleeker, 1863 (Puntius, Enteromius & allies), Poropuntiini (Poropuntius & allies), Cyprinini Rafinesque, 1815 (Cyprinus & allies), Acrossocheilini (new; Acrossocheilus & allies), Spinibarbini (new; Spinibarbus), Schizothoracini McClelland, 1842 (Schizothorax & allies), Schizopygopsini Mirza, 1991 (Schizopygopsis & allies), and Barbini Bleeker, 1859 (Barbus & allies). Phylogenetic relationships within each tribe were discussed. Two or three distinct RAG1 lineages were identified for each of the following tribes Torini, Cyprinini, Spinibarbini, and Barbini, indicating their hybrid origin. The hexaploid African Labeobarbus & allies and Western Asian Capoeta are likely derived from two independent hybridization events between their respective maternal tetraploid ancestors and Cyprinion.


Assuntos
Cipriniformes/classificação , Filogenia , Poliploidia , Animais , Evolução Molecular , Genes Mitocondriais , Genes RAG-1 , Geografia , Funções Verossimilhança , Alinhamento de Sequência , Análise de Sequência de DNA
5.
PLoS One ; 8(9): e73535, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023883

RESUMO

Uncertainties surrounding the evolutionary origin of the epipelagic fish family Scombridae (tunas and mackerels) are symptomatic of the difficulties in resolving suprafamilial relationships within Percomorpha, a hyperdiverse teleost radiation that contains approximately 17,000 species placed in 13 ill-defined orders and 269 families. Here we find that scombrids share a common ancestry with 14 families based on (i) bioinformatic analyses using partial mitochondrial and nuclear gene sequences from all percomorphs deposited in GenBank (10,733 sequences) and (ii) subsequent mitogenomic analysis based on 57 species from those targeted 15 families and 67 outgroup taxa. Morphological heterogeneity among these 15 families is so extraordinary that they have been placed in six different perciform suborders. However, members of the 15 families are either coastal or oceanic pelagic in their ecology with diverse modes of life, suggesting that they represent a previously undetected adaptive radiation in the pelagic realm. Time-calibrated phylogenies imply that scombrids originated from a deep-ocean ancestor and began to radiate after the end-Cretaceous when large predatory epipelagic fishes were selective victims of the Cretaceous-Paleogene mass extinction. We name this clade of open-ocean fishes containing Scombridae "Pelagia" in reference to the common habitat preference that links the 15 families.


Assuntos
Evolução Molecular , Fenômenos Geológicos , Perciformes/fisiologia , Atum/fisiologia , Animais , Biodiversidade , Biologia Computacional , Ecossistema , Perciformes/genética , Atum/genética
6.
BMC Evol Biol ; 11: 177, 2011 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-21693066

RESUMO

BACKGROUND: Freshwater harbors approximately 12,000 fish species accounting for 43% of the diversity of all modern fish. A single ancestral lineage evolved into about two-thirds of this enormous biodiversity (≈ 7900 spp.) and is currently distributed throughout the world's continents except Antarctica. Despite such remarkable species diversity and ubiquity, the evolutionary history of this major freshwater fish clade, Otophysi, remains largely unexplored. To gain insight into the history of otophysan diversification, we constructed a timetree based on whole mitogenome sequences across 110 species representing 55 of the 64 families. RESULTS: Partitioned maximum likelihood analysis based on unambiguously aligned sequences (9923 bp) confidently recovered the monophyly of Otophysi and the two constituent subgroups (Cypriniformes and Characiphysi). The latter clade comprised three orders (Gymnotiformes, Characiformes, Siluriformes), and Gymnotiformes was sister to the latter two groups. One of the two suborders in Characiformes (Characoidei) was more closely related to Siluriformes than to its own suborder (Citharinoidei), rendering the characiforms paraphyletic. Although this novel relationship did not receive strong statistical support, it was supported by analyzing independent nuclear markers. A relaxed molecular clock Bayesian analysis of the divergence times and reconstruction of ancestral habitats on the timetree suggest a Pangaean origin and Mesozoic radiation of otophysans. CONCLUSIONS: The present timetree demonstrates that survival of the ancestral lineages through the two consecutive mass extinctions on Pangaea, and subsequent radiations during the Jurassic through early Cretaceous shaped the modern familial diversity of otophysans. This evolutionary scenario is consistent with recent arguments based on biogeographic inferences and molecular divergence time estimates. No fossil otophysan, however, has been recorded before the Albian, the early Cretaceous 100-112 Ma, creating an over 100 million year time span without fossil evidence. This formidable ghost range partially reflects a genuine difference between the estimated ages of stem group origin (molecular divergence time) and crown group morphological diversification (fossil divergence time); the ghost range, however, would be filled with discoveries of older fossils that can be used as more reasonable time constraints as well as with developments of more realistic models that capture the rates of molecular sequences accurately.


Assuntos
Peixes/genética , Filogenia , Animais , Teorema de Bayes , Evolução Biológica , Peixes-Gato/classificação , Peixes-Gato/genética , Cipriniformes/classificação , Cipriniformes/genética , DNA Mitocondrial/genética , Peixes/classificação , Água Doce , Genoma Mitocondrial
7.
Mol Phylogenet Evol ; 27(3): 476-88, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12742752

RESUMO

Higher-level relationships of the basal Euteleostei (=Protacanthopterygii) are so complex and controversial that at least nine different morphology-based phylogenetic hypotheses have been proposed during the last 30 years. Relationships of the Protacanthopterygii were investigated using mitochondrial genomic (mitogenomic) data from 34 purposefully chosen species (data for 12 species being newly determined during the study) that fully represented major basal euteleostean lineages and some basal teleosts plus neoteleosts as outgroups. Unweighted and weighted maximum parsimony (MP) and maximum likelihood (ML) analyses were conducted with the data set that comprised concatenated nucleotide sequences from 12 protein-coding genes (excluding the ND6 gene and 3rd codon positions) and 22 transfer RNA (tRNA) genes (stem regions only) from the 34 species. The resultant trees were well resolved and largely congruent, with most internal branches being supported by high statistical values. Monophyly of the protacanthopterygians was confidently rejected by the mitogenomic data. Of the five major monophyletic groups that received high statistical support within the protacanthopterygians, a clade comprising members of the alepocephaloids was unexpectedly nested within the Otocephala, sister-group of the euteleosts. The remaining four major monophyletic groups, on the other hand, occupied phylogenetic positions intermediate between the otocephalans and neoteleosts, with a clade comprising esociforms + salmoniforms being more basal to the argentinoids and osmeroids. Although interrelationships of the latter two clades (argentinoids and osmeroids) with the neoteleosts remained ambiguous, the present results indicated explicitly that the protacanthopterygians as currently defined merely represent a collective, polyphyletic group of the basal euteleosts, located between the basal teleosts (elopomorphs and below) and neoteleosts (stomiiforms and above).


Assuntos
DNA Mitocondrial/genética , Peixes/classificação , Filogenia , Animais , Sequência de Bases , Peixes/genética , Funções Verossimilhança , Dados de Sequência Molecular
8.
Mol Phylogenet Evol ; 26(1): 110-20, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12470943

RESUMO

The basal actinopterygians comprise four major lineages (polypteriforms, acipenseriforms, lepisosteids, and Amia) and have been collectively called "ancient fish." We investigated the phylogeny of this group of fishes in relation to teleosts using mitochondrial genomic (mitogenomic) data, and compared this to the various alternative phylogenetic hypotheses that have been proposed previously. In addition to the previously determined complete mitochondrial DNA (mtDNA) sequences from 14 teleosts and two outgroups, we used newly determined mitogenomic sequences of 12 purposefully chosen species representing all the ancient fish lineages plus related teleosts. This data set comprised concatenated nucleotide sequences from 12 protein-coding genes (excluding the ND6 gene and third codon positions) and 22 transfer RNA (tRNA) genes (stem regions only) and these data were subjected to maximum parsimony, maximum likelihood, and Bayesian analyses. The resultant trees from the three methods were well resolved and largely congruent, with most internal branches being supported by high statistical values. Mitogenomic data strongly supported not only the monophyly of the teleosts (osteoglossomorphs and above), but also a sister-group relationship between the teleosts and a clade comprising the acipenseriforms, lepisosteids, and Amia, with the polypteriforms occupying the most basal position in the actinopterygian phylogeny. Although the tree topology differed from any of the previously proposed hypotheses based on morphology, it exhibited congruence with a recently proposed novel hypothesis based on nuclear markers.


Assuntos
DNA Mitocondrial , Peixes/genética , Filogenia , Animais , Marcadores Genéticos , Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA