Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7159, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443290

RESUMO

Polycomb group proteins (PcG), polycomb repressive complexes 1 and 2 (PRC1 and 2), repress lineage inappropriate genes during development to maintain proper cellular identities. It has been recognized that PRC1 localizes at the replication fork, however, the precise functions of PRC1 during DNA replication are elusive. Here, we reveal that a variant PRC1 containing PCGF1 (PCGF1-PRC1) prevents overloading of activators and chromatin remodeling factors on nascent DNA and thereby mediates proper deposition of nucleosomes and correct downstream chromatin configurations in hematopoietic stem and progenitor cells (HSPCs). This function of PCGF1-PRC1 in turn facilitates PRC2-mediated repression of target genes such as Hmga2 and restricts premature myeloid differentiation. PCGF1-PRC1, therefore, maintains the differentiation potential of HSPCs by linking proper nucleosome configuration at the replication fork with PcG-mediated gene silencing to ensure life-long hematopoiesis.


Assuntos
Cromatina , Replicação do DNA , Cromatina/genética , Linhagem da Célula/genética , Nucleossomos/genética , Proteínas do Grupo Polycomb , Complexo Repressor Polycomb 2
2.
Genes Dev ; 32(2): 112-126, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29440259

RESUMO

Stem cell fate is orchestrated by core transcription factors (TFs) and epigenetic modifications. Although regulatory genes that control cell type specification are identified, the transcriptional circuit and the cross-talk among regulatory factors during cell fate decisions remain poorly understood. To identify the "time-lapse" TF networks during B-lineage commitment, we used multipotent progenitors harboring a tamoxifen-inducible form of Id3, an in vitro system in which virtually all cells became B cells within 6 d by simply withdrawing 4-hydroxytamoxifen (4-OHT). Transcriptome and epigenome analysis at multiple time points revealed that ∼10%-30% of differentially expressed genes were virtually controlled by the core TFs, including E2A, EBF1, and PAX5. Strikingly, we found unexpected transcriptional priming before the onset of the key TF program. Inhibition of the immediate early genes such as Nr4a2, Klf4, and Egr1 severely impaired the generation of B cells. Integration of multiple data sets, including transcriptome, protein interactome, and epigenome profiles, identified three representative transcriptional circuits. Single-cell RNA sequencing (RNA-seq) analysis of lymphoid progenitors in bone marrow strongly supported the three-step TF network model during specification of multipotent progenitors toward B-cell lineage in vivo. Thus, our findings will provide a blueprint for studying the normal and neoplastic development of B lymphocytes.


Assuntos
Linfócitos B/metabolismo , Células-Tronco Multipotentes/metabolismo , Transcrição Gênica , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Linhagem da Célula/genética , Células Cultivadas , Epigênese Genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Código das Histonas , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição PAX5/fisiologia , Análise de Célula Única , Transativadores/fisiologia , Transcriptoma
3.
Stem Cell Reports ; 5(5): 716-727, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26607950

RESUMO

Self-renewal potential and multipotency are hallmarks of a stem cell. It is generally accepted that acquisition of such stemness requires rejuvenation of somatic cells through reprogramming of their genetic and epigenetic status.We show here that a simple block of cell differentiation is sufficient to induce and maintain stem cells. By overexpression of the transcriptional inhibitor ID3 in murine hematopoietic progenitor cells and cultivation under B cell induction conditions, the cells undergo developmental arrest and enter a self-renewal cycle. These cells can be maintained in vitro almost indefinitely, and the long-term cultured cells exhibit robust multi-lineage reconstitution when transferred into irradiated mice. These cells can be cloned and re-expanded with 50% plating efficiency, indicating that virtually all cells are self-renewing. Equivalent progenitors were produced from human cord blood stem cells, and these will ultimately be useful as a source of cells for immune cell therapy.


Assuntos
Pontos de Checagem do Ciclo Celular , Células-Tronco Hematopoéticas/citologia , Leucócitos/citologia , Animais , Linhagem da Célula , Células Cultivadas , Sangue Fetal/citologia , Hematopoese , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Camundongos Endogâmicos C57BL
4.
Proc Natl Acad Sci U S A ; 111(32): 11780-5, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25074913

RESUMO

The immune system is influenced by the vital zinc (Zn) status, and Zn deficiency triggers lymphopenia; however, the mechanisms underlying Zn-mediated lymphocyte maintenance remain elusive. Here we investigated ZIP10, a Zn transporter expressed in the early B-cell developmental process. Genetic ablation of Zip10 in early B-cell stages resulted in significant reductions in B-cell populations, and the inducible deletion of Zip10 in pro-B cells increased the caspase activity in parallel with a decrease in intracellular Zn levels. Similarly, the depletion of intracellular Zn by a chemical chelator resulted in spontaneous caspase activation leading to cell death. Collectively, these findings indicated that ZIP10-mediated Zn homeostasis is essential for early B-cell survival. Moreover, we found that ZIP10 expression was regulated by JAK-STAT pathways, and its expression was correlated with STAT activation in human B-cell lymphoma, indicating that the JAK-STAT-ZIP10-Zn signaling axis influences the B-cell homeostasis. Our results establish a role of ZIP10 in cell survival during early B-cell development, and underscore the importance of Zn homeostasis in immune system maintenance.


Assuntos
Apoptose/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Proteínas de Transporte de Cátions/imunologia , Zinco/metabolismo , Animais , Linfócitos B/citologia , Caspases/metabolismo , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Diferenciação Celular , Sobrevivência Celular/imunologia , Citocinas/metabolismo , Homeostase , Humanos , Janus Quinases/metabolismo , Linfoma de Células B/imunologia , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Linfopenia/etiologia , Linfopenia/imunologia , Linfopenia/metabolismo , Camundongos , Camundongos Knockout , Modelos Imunológicos , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Zinco/deficiência
5.
Dev Comp Immunol ; 37(3-4): 354-62, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22391510

RESUMO

Interaction between interleukin (IL)-5 and its receptor (IL-5R) is important for the regulation of immunity against worm infections, allergic reactions and B cell response in mammals. In this study, we identified a full-length cDNA encoding chicken IL-5R α-chain (chIL-5Rα). The deduced amino acid sequence showed 41-43% identity to mammalian homologues. It has four well-conserved cysteines and a WSXWS motif in the extracellular region, and a PPXP motif in the cytoplasmic region. Quantitative RT-PCR analysis revealed that chIL-5Rα mRNA expression was markedly high in bone marrow and relatively high in spleen and lung. Recombinant proteins of soluble chIL-5Rα and cytokines (artificially produced chIL-5 (achIL-5) and another IL-5-like molecule KK34) were expressed by 293F cells to examine the cytokine-receptor interactions. Interaction assay using a Biacore biosensor showed that chIL-5Rα has the capability to bind with monomeric achIL-5, but not with KK34. In conclusion, chicken has an IL-5Rα homologue but KK34 does not complement the IL-5/IL-5R system.


Assuntos
Galinhas/genética , Clonagem Molecular , Subunidade alfa de Receptor de Interleucina-5/genética , Subunidade alfa de Receptor de Interleucina-5/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Galinhas/metabolismo , Feminino , Humanos , Interleucina-5/genética , Interleucina-5/metabolismo , Subunidade alfa de Receptor de Interleucina-5/química , Dados de Sequência Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
6.
J Biol Chem ; 286(46): 40255-65, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21917916

RESUMO

The human SLC39A13 gene encodes ZIP13, a member of the LZT (LIV-1 subfamily of ZIP zinc transporters) family. The ZIP13 protein is important for connective tissue development, and its loss of function is causative for the spondylocheiro dysplastic form of Ehlers-Danlos syndrome. However, this protein has not been characterized in detail. Here we report the first detailed biochemical characterization of the human ZIP13 protein using its ectopic expressed and the purified recombinant protein. Protease accessibility, microscopic, and computational analyses demonstrated that ZIP13 contains eight putative transmembrane domains and a unique hydrophilic region and that it resides with both its N and C termini facing the luminal side on the Golgi. Analyses including cross-linking, immunoprecipitation, Blue Native-PAGE, and size-exclusion chromatography experiments indicated that the ZIP13 protein may form a homo-dimer. We also demonstrated that ZIP13 mediates zinc influx, as assessed by monitoring the expression of the metallothionein gene and by detecting the intracellular zinc level with a zinc indicator, FluoZin-3. Our data indicate that ZIP13 is a homo-dimerized zinc transporter that possesses some domains that are not found in other LZT family members. This is the first biochemical characterization of the physiologically important protein ZIP13 and the demonstration of homo-dimerization for a mammalian ZIP zinc transporter family member. This biochemical characterization of the human ZIP13 protein provides important information for further investigations of its structural characteristics and function.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Síndrome de Ehlers-Danlos/metabolismo , Multimerização Proteica , Zinco/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Linhagem Celular , Síndrome de Ehlers-Danlos/genética , Humanos , Transporte de Íons/genética , Compostos Policíclicos/química , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA