Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Sci Rep ; 14(1): 8536, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609454

RESUMO

Chronic liver injury induces fibrosis that often proceeds to cirrhosis and hepatocellular carcinoma, indicating that prevention and/or resolution of fibrosis is a promising therapeutic target. Hepatic stellate cells (HSCs) are the major driver of fibrosis by expressing extracellular matrices (ECM). HSCs, in the normal liver, are quiescent and activated by liver injury to become myofibroblasts that proliferate and produce ECM. It has been shown that activated HSCs (aHSCs) become a "quiescent-like" state by removal of liver insults. Therefore, deactivation agents can be a therapeutic drug for advanced liver fibrosis. Using aHSCs prepared from human induced pluripotent stem cells, we found that aHSCs were reverted to a quiescent-like state by a combination of chemical compounds that either inhibit or activate a signaling pathway, Lanifibranor, SB431542, Dorsomorphin, retinoic acid, palmitic acid and Y27632, in vitro. Based on these results, we established a high throughput system to screen agents that induce deactivation and demonstrate that a single chemical compound can induce deactivation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias Hepáticas , Humanos , Células Estreladas do Fígado , Cirrose Hepática
2.
Biotechnol Bioeng ; 121(4): 1178-1190, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38184815

RESUMO

Recent advancements in bioengineering have introduced potential alternatives to liver transplantation via the development of self-assembled liver organoids, derived from human-induced pluripotent stem cells (hiPSCs). However, the limited maturity of the tissue makes it challenging to implement this technology on a large scale in clinical settings. In this study, we developed a highly efficient method for generating functional liver organoids from hiPSC-derived carboxypeptidase M liver progenitor cells (CPM+ LPCs), using a microwell structure, and enhanced maturation through direct oxygenation in oxygen-permeable culture plates. We compared the morphology, gene expression profile, and function of the liver organoid with those of cells cultured under conventional conditions using either monolayer or spheroid culture systems. Our results revealed that liver organoids generated using polydimethylsiloxane-based honeycomb microwells significantly exhibited enhanced albumin secretion, hepatic marker expression, and cytochrome P450-mediated metabolism. Additionally, the oxygenated organoids consisted of both hepatocytes and cholangiocytes, which showed increased expression of bile transporter-related genes as well as enhanced bile transport function. Oxygen-permeable polydimethylsiloxane membranes may offer an efficient approach to generating highly mature liver organoids consisting of diverse cell populations.


Assuntos
Células-Tronco Pluripotentes Induzidas , Metaloendopeptidases , Humanos , Oxigênio/metabolismo , Diferenciação Celular , Fígado/metabolismo , Técnicas de Cultura de Células/métodos , Organoides/metabolismo , Dimetilpolisiloxanos , Proteínas Ligadas por GPI
3.
Nat Commun ; 14(1): 6304, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813881

RESUMO

Liver fibrosis results from chronic liver injury triggered by factors such as viral infection, excess alcohol intake, and lipid accumulation. However, the mechanisms underlying liver fibrosis are not fully understood. Here, we demonstrate that the expression of fibroblast growth factor 18 (Fgf18) is elevated in mouse livers following the induction of chronic liver fibrosis models. Deletion of Fgf18 in hepatocytes attenuates liver fibrosis; conversely, overexpression of Fgf18 promotes liver fibrosis. Single-cell RNA sequencing reveals that overexpression of Fgf18 in hepatocytes results in an increase in the number of Lrat+ hepatic stellate cells (HSCs), thereby inducing fibrosis. Mechanistically, FGF18 stimulates the proliferation of HSCs by inducing the expression of Ccnd1. Moreover, the expression of FGF18 is correlated with the expression of profibrotic genes, such as COL1A1 and ACTA2, in human liver biopsy samples. Thus, FGF18 promotes liver fibrosis and could serve as a therapeutic target to treat liver fibrosis.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Camundongos , Animais , Humanos , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/patologia , Fígado/metabolismo , Fibrose , Proliferação de Células
4.
Commun Biol ; 5(1): 85, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064244

RESUMO

Notch signaling is one of the most common drivers of carcinogenesis in many types of cancers, including hepatocellular carcinoma (HCC); however, it occasionally suppresses tumor progression. Moreover, it is virtually unknown how different sets of Notch ligands and receptors regulate the HCC development. In this study, we demonstrate that the expression of the Notch ligands, Delta-like 4 (Dll4) and Jagged-1 (Jag1), is upregulated during diethylnitrosamine-induced hepatocarcinogenesis. Dll4 is detected in the preneoplastic hepatocytes and HCC cells, but not in the normal hepatocytes, while Jag1 is expressed in the desmin-positive mesenchymal cells. Hepatocyte-specific Dll4 knockout abolishes the Notch1 signaling and suppresses the tumor progression. In contrast, Jag1 deletion induces the ectopic expression of Dll4 in hepatocytes along with the loss of Notch2 signaling, leading to the tumor progression. These results indicate that the two distinct Notch signals, Dll4/Notch1 and Jag1/Notch2, are antagonistic to each other, exerting opposite effects on HCC progression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Carcinogênese/metabolismo , Proteína Jagged-1/metabolismo , Neoplasias Hepáticas/metabolismo , Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Regulação da Expressão Gênica , Predisposição Genética para Doença , Proteína Jagged-1/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Receptor Notch1/genética , Receptor Notch2/genética
5.
Sci Rep ; 11(1): 9530, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953224

RESUMO

Generation of pancreatic ß cells from pluripotent stem cells is a key technology to develop cell therapy for insulin-dependent diabetes and considerable efforts have been made to produce ß cells. However, due to multiple and lengthy differentiation steps, production of ß cells is often unstable. It is also desirable to eliminate undifferentiated cells to avoid potential risks of tumorigenesis. To isolate ß cell precursors from late stage pancreatic endocrine progenitor (EP) cells derived from iPS cells, we have identified CD82, a member of the tetraspanin family. CD82+ cells at the EP stage differentiated into endocrine cells more efficiently than CD82- EP stage cells. We also show that CD82+ cells in human islets secreted insulin more efficiently than CD82- cells. Furthermore, knockdown of CD82 expression by siRNA or inhibition of CD82 by monoclonal antibodies in NGN3+ cells suppressed the function of ß cells with glucose-stimulated insulin secretion, suggesting that CD82 plays a role in maturation of EP cells to ß cells.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células Secretoras de Insulina/citologia , Proteína Kangai-1/análise , Diferenciação Celular , Linhagem Celular , Separação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Proteína Kangai-1/metabolismo
6.
Sci Rep ; 10(1): 17150, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051515

RESUMO

Oncostatin M (OSM), a member of the IL-6 family of cytokines, has important roles in renal diseases. The relationship between OSM and kidney stone disease, however, remains unclear. To investigate the roles of OSM in the development of kidney stone disease, we generated a mouse model of renal crystal formation using OSM receptor ß (OSMRß)-deficient mice (OSMRß-/- mice). There were fewer renal crystal deposits in OSMRß-/- mice than in wild-type (WT) mice. Crystal-binding molecules (osteopontin, annexin A1, and annexin A2), inflammatory cytokines (TNF-α and IL-1ß), and fibrosis markers (TGF-ß, collagen 1a2, and α-smooth muscle actin) were also decreased in the kidneys of OSMRß-/- mice compared with those in WT mice. Immunofluorescence staining showed that OSMRß was expressed in renal tubular epithelial cells (RTECs) and renal fibroblasts in the model of renal crystal formation. In the cultured RTECs and renal fibroblasts, OSM directly induced the expression of crystal-binding molecules and fibrosis markers. Expressions of inflammatory cytokines were increased by stimulation with OSM in cultured renal fibroblasts. OSM may promote the formation of renal crystal deposits by directly acting on RTECs and renal fibroblasts to produce crystal-binding molecules and inflammatory cytokines.


Assuntos
Rim/metabolismo , Rim/patologia , Subunidade beta de Receptor de Oncostatina M/metabolismo , Oncostatina M/metabolismo , Animais , Biomarcadores/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/metabolismo , Fibrose/patologia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
7.
Sci Rep ; 10(1): 14349, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873852

RESUMO

Hepatocytes derived from human iPSCs are useful to study hepatitis B virus (HBV) infection, however infection efficiency is rather poor. In order to improve the efficiency of HBV infection to iPSC-derived hepatocytes, we set a co-culture of hepatocytes with liver non-parenchymal cells and found that liver sinusoidal endothelial cells (LSECs) enhanced HBV infection by secreting epidermal growth factor (EGF). While EGF receptor (EGFR) is known as a co-receptor for HBV, we found that EGF enhanced HBV infection at a low dose of EGF, whereas EGF at a high dose suppressed HBV infection. EGFR is internalized by clathrin-mediated endocytosis (CME) and clathrin-independent endocytosis (CIE) pathways depending on the dose of EGF. At a high dose of EGF, the endocytosed EGFR via CIE is degraded in the lysosome. This study is the first to provide evidence that HBV is endocytosed via CME and CIE pathways at a low and high dose of EGF, respectively. In conclusion, we developed an in vitro system of HBV infection using iPSC-derived liver cells, and show that EGF secreted from LSECs modulates HBV infection in a dose dependent manner.


Assuntos
Células Endoteliais/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Vírus da Hepatite B/metabolismo , Hepatite B/metabolismo , Fígado/citologia , Animais , Clatrina/metabolismo , Técnicas de Cocultura , Endocitose/efeitos dos fármacos , Endocitose/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Técnicas de Silenciamento de Genes , Células Hep G2 , Hepatite B/virologia , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Transfecção , Internalização do Vírus
8.
Cell Metab ; 32(5): 814-828.e6, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32949498

RESUMO

Cell senescence plays a key role in age-associated organ dysfunction, but the in vivo pathogenesis is largely unclear. Here, we generated a p16-CreERT2-tdTomato mouse model to analyze the in vivo characteristics of p16high cells at a single-cell level. We found tdTomato-positive p16high cells detectable in all organs, which were enriched with age. We also found that these cells failed to proliferate and had half-lives ranging from 2.6 to 4.2 months, depending on the tissue examined. Single-cell transcriptomics in the liver and kidneys revealed that p16high cells were present in various cell types, though most dominant in hepatic endothelium and in renal proximal and distal tubule epithelia, and that these cells exhibited heterogeneous senescence-associated phenotypes. Further, elimination of p16high cells ameliorated nonalcoholic steatohepatitis-related hepatic lipidosis and immune cell infiltration. Our new mouse model and single-cell analysis provide a powerful resource to enable the discovery of previously unidentified senescence functions in vivo.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Animais , Linhagem Celular , Senescência Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Análise de Célula Única
9.
Commun Biol ; 3(1): 289, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503996

RESUMO

Upon severe and/or chronic liver injury, ectopic emergence and expansion of atypical biliary epithelial-like cells in the liver parenchyma, known as the ductular reaction, is typically induced and implicated in organ regeneration. Although this phenomenon has long been postulated to represent activation of facultative liver stem/progenitor cells that give rise to new hepatocytes, recent lineage-tracing analyses have challenged this notion, thereby leaving the pro-regenerative role of the ductular reaction enigmatic. Here, we show that the expanded and remodelled intrahepatic biliary epithelia in the ductular reaction constituted functional and complementary bile-excreting conduit systems in injured parenchyma where hepatocyte bile canalicular networks were lost. The canalicular collapse was an incipient defect commonly associated with hepatocyte injury irrespective of cholestatic statuses, and could sufficiently provoke the ductular reaction when artificially induced. We propose a unifying model for the induction of the ductular reaction, where compensatory biliary epithelial tissue remodeling ensures bile-excreting network homeostasis.


Assuntos
Ductos Biliares Intra-Hepáticos/citologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Modelos Animais de Doenças , Células Epiteliais/citologia , Hepatócitos/citologia , Animais , Ductos Biliares Intra-Hepáticos/fisiologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Células Epiteliais/fisiologia , Feminino , Hepatócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
Differentiation ; 114: 36-48, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32563741

RESUMO

The capability to produce and maintain functional human adult hepatocytes remains one of the major challenges for the use of in-vitro models toward liver cell therapy and industrial drug-screening applications. Among the suggested strategies to solve this issue, the use of human-induced pluripotent stem cells (hiPSCs), differentiated toward hepatocyte-like cells (HLCs) is promising. In this work, we propose a 31-day long protocol, that includes a final 14-day long phase of oncostatin treatment, as opposed to a 7-day treatment which led to the formation of a hepatic tissue functional for CYP1A2, CYP2B6, CYP2C8, CYP2D6, and CYP3A4. The production of albumin, as well as bile acid metabolism and transport, were also detected. Transcriptome profile comparisons and liver transcription factors (TFs) motif dynamics revealed increased expression of typical hepatic markers such as HNF1A and of important metabolic markers like PPARA. The performed analysis has allowed for the extraction of potential targets and pathways which would allow enhanced hepatic maturation in-vitro. From this investigation, NRF1 and SP3 appeared as transcription factors of importance. Complex epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) patterns were also observed during the differentiation process. Moreover, whole transcriptome analysis highlighted a response typical of the one observed in liver regeneration and hepatocyte proliferation. While a complete maturation of hepatocytes was yet to be obtained, the results presented in this work provide new insights into the process of liver development and highlight potential targets aimed to improve in-vitro liver regeneration.


Assuntos
Diferenciação Celular/genética , Hepatócitos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Regeneração Hepática , Fígado/crescimento & desenvolvimento , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2C8/genética , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP3A/genética , Avaliação Pré-Clínica de Medicamentos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/citologia , Fígado/efeitos dos fármacos , Fator 1 Nuclear Respiratório/genética , Oncostatina M/farmacologia , Fator de Transcrição Sp3/genética , Transcriptoma/efeitos dos fármacos
11.
Genes Cells ; 25(5): 302-311, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32065490

RESUMO

Transplantation of pancreatic islets is an effective therapy for severe type 1 diabetes. As donor shortage is a major problem for this therapy, attempts have been made to produce a large number of pancreatic islets from human pluripotent stem cells (hPSCs). However, as the differentiation of hPSCs to pancreatic islets requires multiple and lengthy processes using various expensive cytokines, the process is variable, low efficiency and costly. Therefore, it would be beneficial if islet progenitors could be expanded. Neurogenin3 (NGN3)-expressing pancreatic endocrine progenitor (EP) cells derived from hPSCs exhibited the ability to differentiate into pancreatic islets while their cell cycle was arrested. By using a lentivirus vector, we introduced several growth-promoting genes into NGN3-expressing EP cells. We found that SV40LT expression induced proliferation of the EP cells but reduced the expression of endocrine lineage-commitment factors, NGN3, NEUROD1 and NKX2.2, resulting in the suppression of islet differentiation. By using the Cre-loxP system, we removed SV40LT after the expansion, leading to re-expression of endocrine-lineage commitment genes and differentiation into functional pancreatic islets. Thus, our findings will pave a way to generate a large quantity of functional pancreatic islets through the expansion of EP cells from hPSCs.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Homeodomínio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Ilhotas Pancreáticas/citologia , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares , Fatores de Transcrição , Proteínas de Peixe-Zebra/genética
12.
Biochem Biophys Res Commun ; 524(2): 465-471, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32008745

RESUMO

Laminin is a family of basement membrane proteins, whose selective and spatiotemporal expression profiles are linked to their various functions in development, maintenance, and functional regulation of different tissues. In the liver, α1-and α5-containing laminin isoforms have been documented to be critically involved in the developmental process of the epithelial tissue of the bile duct. However, possible roles of other laminin isoforms in bile duct formation and function remain elusive. Here, we evaluated public single-cell RNA sequencing databases on human liver cells to reveal expression landscape of laminin genes, and found that genes for laminin-332 subunits were conjointly expressed in the EPCAM+ biliary epithelial cell population. Expression of the ß3 and γ2 subunit genes was restricted to biliary epithelial cells in the liver and, remarkably, showed apparent heterogeneity among them. We confirmed the heterogeneous nature of the laminin-ß3 expression in murine livers, which was firmly related to morphological substructures in the biliary epithelium. Finally, we generated the liver epithelial tissue-specific laminin- ß3 knockout mice and found that this laminin subunit was dispensable under physiological conditions. Together, our present findings have identified the ß3 subunit and the related laminin-332 isoform as useful markers and potentially important regulatory molecules for future understanding of pathophysiology in the hepatobiliary system.


Assuntos
Moléculas de Adesão Celular/análise , Fígado/metabolismo , Animais , Ductos Biliares/metabolismo , Moléculas de Adesão Celular/genética , Células Epiteliais/metabolismo , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Calinina
13.
Biotechnol Bioeng ; 116(7): 1762-1776, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30883676

RESUMO

In the present study, we evaluated the performance of different protocols for the hepatic differentiation of human-induced pluripotent stem cells (hiPSCs) in microfluidic biochips. Strategies for complete and partial on-chip differentiation were tested. Unlike full on-chip differentiation, the transfer of iPSCs from Petri dishes to biochips during the differentiation process produced a heterogeneous tissue with enhanced hepatic features compared with control cultures in Petri dishes. The tissue in biochips was constituted of cells expressing either stabilin-1 or albumin, while no stabilin-1 was detected in controls. Functional analysis also revealed double the production rate for albumin in biochips (about 2,000 ng per day per 106 cells). Besides this, tissues obtained in biochips and controls exhibited the metabolism of a specific bile acid. Whole transcriptome analysis with nanoCAGE exhibited a differential expression of 302 genes between control and biochip cultures and a higher degree of hepatic differentiation in biochips, together with increased promoter motif activity for typical liver transcription factors such as estrogen related receptor alpha ( ESRRA), hepatic nuclear factor 1 ( HNF1A), hepatic nuclear factor 4 ( HNF4A), transcription factor 4 ( TCF4), and CCAAT enhancer binding protein alpha ( CEBPA). Gene set enrichment analysis identified several pathways related to the extracellular matrix, tissue reorganization, hypoxia-inducible transcription factor, and glycolysis that were differentially modulated in biochip cultures. However, the presence of CK19/ALB-positive cells and the ɑ-fetoprotein levels measured in the cultures still reflect primitive differentiation patterns. Overall, we identified key parameters for improved hepatic differentiation on-chip, including the maturation stage of hepatic progenitors, inoculation density, adhesion time, and perfusion flow rate. Optimization of these parameters further led to establish a protocol for reproducible differentiation of hiPSCs into hepatocyte-like cells in microfluidic biochips with significant improvements over Petri dish cultures.


Assuntos
Diferenciação Celular , Hepatócitos , Células-Tronco Pluripotentes Induzidas , Fígado , Técnicas Analíticas Microfluídicas , Nicho de Células-Tronco , Regulação da Expressão Gênica , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/citologia , Fígado/metabolismo , Fatores de Transcrição/metabolismo
14.
FEBS Lett ; 593(4): 386-394, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30609020

RESUMO

Mesothelial cells, which cover the surface of visceral organs and serous cavities in mammals, play a crucial role in preventing adhesion. We previously reported that primary mesothelial progenitor cells (MPCs) can not only prevent postoperative adhesion but also promote liver regeneration after hepatectomy. Induced pluripotent stem cells (iPSCs) have the potential to be used for regenerative medicine. Here, we have established a differentiation protocol for mouse iPSC-derived MPCs (miMPCs) via the exposure to defined factors, as well as purification using MPC-specific cell surface antigens. Furthermore, the miMPCs had the ability to suppress postoperative adhesion and facilitate liver regeneration. This is the first report highlighting the generation of functional miMPCs, which may offer potential for de novo cell therapy.


Assuntos
Células Epiteliais/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Regeneração Hepática/efeitos dos fármacos , Células-Tronco/citologia , Aderências Teciduais/terapia , Animais , Antígenos de Superfície/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/imunologia , Epitélio/imunologia , Células-Tronco Pluripotentes Induzidas/imunologia , Masculino , Camundongos , Transplante de Células-Tronco , Células-Tronco/imunologia
15.
Regen Ther ; 12: 14-19, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31890762

RESUMO

A differentiation of human induced pluripotent stem cells (hiPSCs) into definitive endoderm linage is required for a preparation of metabolic organ derived cells. The differentiation consumed high-priced cytokines and small molecules, which have hampered the manufacturability of differentiated cells. Although the cytokines and small molecules are remained or cells produce the autocrine factors, daily culture medium change should be proceeded to remove toxic metabolites generated from cells. In this study, we developed a simple dialysis culture system to refine the medium during definitive endodermal differentiation. We demonstrated that dialysis culture prevented cell damage to remove lactate. The hiPSCs cultured with dialysis also differentiated similarly as usual differentiation without dialysis even if they were not supplied Activin A for latter culture days in the differentiation. With this dialysis culture system, hiPSCs were differentiated into endodermal lineage with medium refinement and recycling and autocrine factors as well as cytokines, which may lead to reduce differentiation cost.

16.
Tissue Eng Part A ; 25(5-6): 457-467, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30141379

RESUMO

IMPACT STATEMENT: Although oxygen is a vital nutrient for the hepatocytes in vitro, few reports have focused on its effect during hepatic differentiation of induced pluripotent stem cells (iPSCs). In this report, we performed the hepatic differentiation of human iPSCs (hiPSCs) under different atmospheric oxygen concentrations and oxygen supply fluxes to investigate the effects of oxygen in terms of both the concentration and the supply flux. Results demonstrate that direct oxygenation through a polydimethylsiloxane (PDMS) membrane enhances the maturation and efficient production of hiPSC-derived hepatocyte-like cells (iHeps). Thus, direct oxygenation through a PDMS membrane is a better alternative culture method over conventional tissue culture-treated polystyrene (TCPS) plates for the maturation of hiPSC-derived hepatocytes in vitro.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular , Células-Tronco Pluripotentes Induzidas/citologia , Fígado/citologia , Oxigênio/farmacologia , Albuminas/genética , Albuminas/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , DNA/metabolismo , Dimetilpolisiloxanos/farmacologia , Endoderma/citologia , Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos
17.
Am J Pathol ; 188(9): 2059-2073, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30126547

RESUMO

Peribiliary glands (PBGs) are accessory glands with mucinous and serous acini in the biliary tree. The PBG is composed of a heterogeneous cell population, such as mucus- and pancreatic enzyme-producing epithelial cells, whereas it constitutes niches for multipotential stem/progenitor cells in the human extrahepatic bile duct (EHBD). By contrast, the nature of PBGs in the mouse EHBD remains unclear. Our aim was to establish a method for isolating and characterizing PBG-constituting cells in the mouse EHBD. We found that trophoblast cell surface protein 2 (Trop2) was expressed in the luminal epithelium of mouse EHBD exclusively, but not in the PBG. On the basis of the differential expression profile of Trop2, lumen-forming biliary epithelial cells (LBECs) and PBG-constituting epithelial cells (PBECs) were separately isolated for further characterization. Gene expression analysis revealed that the isolated mouse PBECs expressed several marker genes related to human PBGs. In the colony formation assay, PBECs showed significantly higher colony formation capacity than LBECs. In the organoid formation assay, PBECs formed cystic organoid with LBEC-like phenotype. Interestingly, PBECs proliferated, accompanied by reexpression of Trop2 in vivo after bile duct ligation. Furthermore, the unique expression profile of Trop2 was conserved in human EHBD. Our findings indicate that Trop2 is a useful marker in investigating the pathophysiological roles and characteristics of mouse and human PBGs in biliary diseases.


Assuntos
Antígenos de Neoplasias/metabolismo , Ductos Biliares Extra-Hepáticos/citologia , Moléculas de Adesão Celular/metabolismo , Glândulas Endócrinas/citologia , Células-Tronco/citologia , Animais , Ductos Biliares Extra-Hepáticos/metabolismo , Neoplasias do Sistema Biliar/metabolismo , Neoplasias do Sistema Biliar/patologia , Proliferação de Células , Células Cultivadas , Glândulas Endócrinas/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fenótipo , Células-Tronco/metabolismo
18.
Sci Rep ; 8(1): 11086, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-30038407

RESUMO

Establishing a bile duct in vitro is valuable to obtain relevant hepatic tissue culture systems for cell-based assays in chemical and drug metabolism analyses. The cyst constitutes the initial morphogenesis for bile duct formation from biliary epithelial cells (BECs) and serves the main building block of bile duct network morphogenesis from the ductal plate during embryogenesis in rodents. Cysts have been commonly cultured via Matrigel-embedded culture, which does not allow structural organisation and restricts the productivity and homogeneity of cysts. In this study, we propose a new method utilising oxygen permeable honeycomb microwells for efficient cyst establishment. Primary mouse BECs were seeded on four sizes of honeycomb microwell (46, 76, 126, and 326 µm-size in diameter). Matrigel in various concentrations was added to assist in cyst formation. The dimension accommodated by microwells was shown to play an important role in effective cyst formation. Cytological morphology, bile acid transportation, and gene expression of the cysts confirmed the favourable basic bile duct function compared to that obtained using Matrigel-embedded culture. Our method is expected to contribute to engineered in vitro liver tissue formation for cell-based assays.


Assuntos
Ductos Biliares/citologia , Ductos Biliares/crescimento & desenvolvimento , Células Epiteliais/citologia , Morfogênese , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Animais , Biomarcadores/metabolismo , Agregação Celular , Células Cultivadas , Colágeno/farmacologia , Dimetilpolisiloxanos/química , Combinação de Medicamentos , Laminina/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Imagem Óptica , Proteoglicanas/farmacologia
19.
Elife ; 72018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30059007

RESUMO

Under chronic or severe liver injury, liver progenitor cells (LPCs) of biliary origin are known to expand and contribute to the regeneration of hepatocytes and cholangiocytes. This regeneration process is called ductular reaction (DR), which is accompanied by dynamic remodeling of biliary tissue. Although the DR shows apparently distinct mode of biliary extension depending on the type of liver injury, the key regulatory mechanism remains poorly understood. Here, we show that Lutheran (Lu)/Basal cell adhesion molecule (BCAM) regulates the morphogenesis of DR depending on liver disease models. Lu+ and Lu- biliary cells isolated from injured liver exhibit opposite phenotypes in cell motility and duct formation capacities in vitro. By overexpression of Lu, Lu- biliary cells acquire the phenotype of Lu+ biliary cells. Lu-deficient mice showed severe defects in DR. Our findings reveal a critical role of Lu in the control of phenotypic heterogeneity of DR in distinct liver disease models.


Assuntos
Ductos Biliares/metabolismo , Ductos Biliares/fisiologia , Moléculas de Adesão Celular/metabolismo , Regeneração Hepática , Sistema do Grupo Sanguíneo Lutheran/metabolismo , Glicoproteínas de Membrana/metabolismo , Animais , Especificidade de Anticorpos/imunologia , Movimento Celular/genética , Separação Celular , Colina , Dieta , Modelos Animais de Doenças , Molécula de Adesão da Célula Epitelial/metabolismo , Regulação da Expressão Gênica , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Laminina/metabolismo , Fígado/metabolismo , Regeneração Hepática/genética , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes
20.
Hepatol Commun ; 2(6): 703-717, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29881822

RESUMO

Tribbles pseudokinase 1 (Trib1) is a negative regulator of CCAAT/enhancer binding protein α (C/EBPα) and is known to induce granulopoiesis while suppressing monocyte differentiation. Loss of Trib1 was previously shown to increase the neutrophil population in the spleen but lead to M2-like macrophage reduction. Because M2 macrophages are anti-inflammatory and promote tissue repair by producing fibrogenic factors, we investigated liver fibrosis in Trib1-deficient mice. Interestingly, loss of Trib1 suppressed fibrosis in the CCl4-induced chronic liver injury model. Trib1 knockout increased neutrophils but had a minimal effect on the macrophage population in the liver. Hepatic expressions of neutrophil matrix metalloproteinases (Mmp)8 and Mmp9 were increased, but the production of fibrogenic factors, including transforming growth factor ß1, was not affected by loss of Trib1. These results suggest that neutrophils are responsible for the suppression of fibrosis in Trib1-deficient liver. Consistently, transplantation of Trib1-deficient bone marrow cells into wild-type mice alleviated CCl4-induced fibrosis. Furthermore, expression of chemokine (C-X-C motif) ligand 1 (Cxcl1) by adeno-associated viral vector in the normal liver recruited neutrophils and suppressed CCl4-induced fibrosis; infusion of wild-type neutrophils in CCl4-treated mice also ameliorated fibrosis. Using recombinant adeno-associated virus-mediated expression of Mmp8 and Mmp9 alleviated liver fibrosis. Finally, neutrophil depletion by infusion of Ly6G antibody significantly enhanced CCl4-induced fibrosis. Conclusion: While neutrophils are well known to exacerbate acute liver injury, our results demonstrate a beneficial role of neutrophils in chronic liver injury by promoting fibrolysis. (Hepatology Communications 2018;2:703-717).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA