Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neuroimmunol ; 380: 578109, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37210799

RESUMO

We challenged to create a mouse model of neuromyelitis optica spectrum disorder (NMOSD) induced by AQP4 peptide immunization. Intradermal immunization with AQP4 p201-220 peptide induced paralysis in C57BL/6J mice, but not in AQP4 KO mice. AQP4 peptide-immunized mice showed pathological features similar to NMOSD. Administration of anti-IL-6 receptor antibody (MR16-1) inhibited the induction of clinical signs and prevented the loss of GFAP/AQP4 and deposition of complement factors in AQP4 peptide-immunized mice. This novel experimental model may contribute to further understanding the pathogenesis of NMOSD, elucidating the mechanism of action of therapeutic agents, and developing new therapeutic approaches.


Assuntos
Neuromielite Óptica , Camundongos , Animais , Aquaporina 4 , Camundongos Endogâmicos C57BL , Imunização , Peptídeos , Autoanticorpos
2.
Artigo em Inglês | MEDLINE | ID: mdl-34667128

RESUMO

BACKGROUND AND OBJECTIVES: To evaluate the pathophysiology of neuromyelitis optica spectrum disorder (NMOSD) and the therapeutic mechanism and levels of interleukin-6 (IL-6) blockade (satralizumab), especially with respect to blood-brain barrier (BBB) disruption with the new in vitro and ex vivo human BBB models and in vivo model. METHODS: We constructed new static in vitro and flow-based ex vivo models for evaluating continued barrier function, leukocyte transmigration, and intracerebral transferability of neuromyelitis optica-immunoglobulin G (NMO-IgG) and satralizumab across the BBB using the newly established triple coculture system that are specialized to closely mimic endothelial cell contact of pericytes and endfeet of astrocytes. In the in vivo study, we assessed the effects of an anti-IL-6 receptor antibody for mice (MR16-1) on in vivo BBB disruption in mice with experimental autoimmune encephalomyelitis in which IL-6 concentration in the spinal cord dramatically increases. RESULTS: In vitro and ex vivo experiments demonstrated that NMO-IgG increased intracerebral transferability of satralizumab and NMO-IgG and that satralizumab suppressed the NMO-IgG-induced transmigration of T cells and barrier dysfunction. In the in vivo study, the blockade of IL-6 signaling suppressed the migration of T cells into the spinal cord and prevented the increased BBB permeability. DISCUSSION: These results suggest that (1) our triple-cultured in vitro and in ex vivo BBB models are ideal for evaluating barrier function, leukocyte transmigration, and intracerebral transferability; (2) NMO-IgG increased the intracerebral transferability of NMO-IgG via decreasing barrier function and induced secretion of IL-6 from astrocytes causing more dysfunction of the barrier and disrupting controlled cellular infiltration; and (3) satralizumab, which can pass through the BBB in the presence of NMO-IgG, suppresses the BBB dysfunction and the infiltration of inflammatory cells, leading to prevention of onset of NMOSD.


Assuntos
Anticorpos Bloqueadores/farmacologia , Autoanticorpos/farmacologia , Barreira Hematoencefálica , Encefalomielite Autoimune Experimental/imunologia , Interleucina-6/imunologia , Neuromielite Óptica , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/fisiopatologia , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina G , Camundongos , Camundongos Endogâmicos C57BL , Neuromielite Óptica/imunologia , Neuromielite Óptica/prevenção & controle
3.
Basic Clin Pharmacol Toxicol ; 108(1): 40-5, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20722640

RESUMO

Certain chemotherapeutic agents subject cells to oxidative stress, thereby promoting adverse effects. However, the molecular machinery governing 5-fluorouracil (5-FU)-mediated myelotoxicity is obscure. The purpose of this study was to clarify whether 5-FU-induced myelotoxicity is a cause of oxidative stress. Treatment of mice with 5-FU (75 mg/kg, i.p.) caused a significant induction of haem oxygenase-1 and a decrease in glutathione contents in bone marrow cells, both of which are the indicators of oxidative stress. The 5-FU-mediated decrease in the myeloid colony formation was intensified in Nrf2(-/-) mice, in which antioxidant proteins were down-regulated. N-Acetylcysteine reversed the 5-FU-induced decreases in the glutathione content, number of bone marrow cells per femur and myeloid colony formation. Results from the present study reveal that 5-FU induces oxidative stress in bone marrow, which is involved, at least in part, in myelotoxicity in mice. Therefore, Nrf2-dependent genes as well as glutathione levels in bone marrow could be therapeutic targets for decreasing such side-effects in 5-FU-based chemotherapy.


Assuntos
Medula Óssea/efeitos dos fármacos , Fluoruracila/toxicidade , Imunossupressores/toxicidade , Estresse Oxidativo , Acetilcisteína/metabolismo , Animais , Medula Óssea/enzimologia , Medula Óssea/metabolismo , Indução Enzimática/efeitos dos fármacos , Glutationa/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA