Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Oleo Sci ; 72(3): 303-312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36878584

RESUMO

Dietary fish oil containing n-3 polyunsaturated fatty acids provides health benefits by lowering lipid levels in the liver and serum. ß-Conglycinin (ßCG) is a major constituent protein in soybean with many physiological effects, such as lowering blood triglyceride levels, preventing obesity and diabetes, and improving hepatic lipid metabolism. However, the combined effects of fish oil and ßCG remain unclear. Here, we investigated the effects of a dietary combination of fish oil and ßCG on lipid and glucose parameters in diabetic/obese KK-A y mice. KK-A y mice were divided into three groups: control, fish oil, and fish oil + ßCG; these groups were fed a casein-based diet containing 7% (w/w) soybean oil, a casein-based diet containing 2% (w/w) soybean oil and 5% (w/w) fish oil, and a ßCG-based diet containing 2% (w/w) soybean oil and 5% (w/w) fish oil, respectively. The effects of the dietary combination of fish oil and ßCG on blood biochemical parameters, adipose tissue weight, expression levels of fat- and glucose metabolism-related genes, and cecal microbiome composition were evaluated. The total white adipose tissue weight (p < 0.05), levels of total serum cholesterol (p < 0.01), triglyceride (p < 0.01), and blood glucose (p < 0.05), and expression levels of fatty acid synthesis-related genes (including Fasn (p < 0.05) and Acc (p < 0.05)), and glucose metabolism-related genes (such as Pepck (p < 0.05)) were lower in the fish oil and fish oil + ßCG groups than in the control group. Furthermore, the relative abundance of Bacteroidaceae and Coriobacteriaceae differed significantly between the fish oil + ßCG and control groups. These findings suggest that dietary intake of fish oil + ßCG may prevent obesity and diabetes, alleviate lipid abnormalities, and alter the gut microbiome composition in diabetic/obese KK-A y mice. Further research is needed to build on this study to evaluate the health benefits of major components of Japanese food.


Assuntos
Diabetes Mellitus , Ácidos Graxos Ômega-3 , Microbioma Gastrointestinal , Animais , Camundongos , Óleos de Peixe/farmacologia , Glicemia , Caseínas , Óleo de Soja/farmacologia , Dieta , Tecido Adiposo , Ácidos Graxos Ômega-3/farmacologia , Obesidade
2.
Biochem Biophys Res Commun ; 621: 176-182, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-35841764

RESUMO

We previously found that glucagon-like peptide 1 (GLP-1) secretion by co-administration of maltose plus an α-glucosidase inhibitor miglitol (maltose/miglitol) was suppressed by a GLUT2 inhibitor phloretin in mice. In addition, maltose/miglitol inhibited glucose-dependent insulinotropic polypeptide (GIP) secretion through a mechanism involving short chain fatty acids (SCFAs) produced by microbiome. However, it remains unknown whether phloretin suppresses GLP-1 secretion by modulating SCFAs. In this study, we examined the effect of phloretin on SCFA release from microbiome in vitro and in vivo. In Escherichia coli, acetate release into the medium was suppressed by phloretin, when cultured with maltose/miglitol. In mice, phloretin inhibited maltose/miglitol-induced SCFA increase in the portal vein. In addition, alpha methyl-d-glucose (αMDG), a poor substrate for GLUT2, significantly increased GLP-1 secretion when co-administered with phloridzin in mice, suggesting that GLUT2 is not essential for glucose/phloridzin-induced GLP-1 secretion. αMDG increased portal SCFA levels, thereby increasing GLP-1 secretion and suppressing GIP secretion in mice, suggesting that αMDG is metabolizable not for mammals, but for microbiota. In conclusion, phloretin is suggested to suppress maltose/miglitol-induced GLP-1 secretion via inhibiting SCFAs produced by microbiome.


Assuntos
Microbioma Gastrointestinal , Peptídeo 1 Semelhante ao Glucagon , Animais , Ácidos Graxos Voláteis , Polipeptídeo Inibidor Gástrico , Glucose , Maltose , Mamíferos , Camundongos , Floretina/farmacologia , Florizina , Receptores Acoplados a Proteínas G
3.
Int J Mol Sci ; 20(18)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509948

RESUMO

As glucose-dependent insulinotropic polypeptide (GIP) possesses pro-adipogenic action, the suppression of the GIP hypersecretion seen in obesity might represent a novel therapeutic approach to the treatment of obesity. However, the mechanism of GIP hypersecretion remains largely unknown. In the present study, we investigated GIP secretion in two mouse models of obesity: High-fat diet-induced obese (DIO) mice and leptin-deficient Lepob/ob mice. In DIO mice, plasma GIP was increased along with an increase in GIP mRNA expression in the lower small intestine. Despite the robust alteration in the gut microbiome in DIO mice, co-administration of maltose and the α-glucosidase inhibitor (α-GI) miglitol induced the microbiome-mediated suppression of GIP secretion. The plasma GIP levels of Lepob/ob mice were also elevated and were suppressed by fat transplantation. The GIP mRNA expression in fat tissue was not increased in Lepob/ob mice, while the expression of an interleukin-1 receptor antagonist (IL-1Ra) was increased. Fat transplantation suppressed the expression of IL-1Ra. The plasma IL-1Ra levels were positively correlated with the plasma GIP levels. Accordingly, although circulating GIP levels are increased in both DIO and Lepob/ob mice, the underlying mechanisms differ, and the anti-obesity actions of α-GIs and leptin sensitizers may be mediated partly by the suppression of GIP secretion.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Polipeptídeo Inibidor Gástrico/metabolismo , Leptina/deficiência , Obesidade/metabolismo , Animais , Polipeptídeo Inibidor Gástrico/sangue , Polipeptídeo Inibidor Gástrico/genética , Expressão Gênica , Proteína Antagonista do Receptor de Interleucina 1/sangue , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Leptina/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/etiologia , Obesidade/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores dos Hormônios Gastrointestinais/genética , Receptores dos Hormônios Gastrointestinais/metabolismo
4.
J Endocrinol ; 239(3): 267-276, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30400014

RESUMO

Mechanisms of carbohydrate-induced secretion of the two incretins namely glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are considered to be mostly similar. However, we found that mice exhibit opposite secretory responses in response to co-administration of maltose plus an α-glucosidase inhibitor miglitol (maltose/miglitol), stimulatory for GLP-1, as reported previously, but inhibitory for GIP. Gut microbiota was shown to be involved in maltose/miglitol-induced GIP suppression, as the suppression was attenuated in antibiotics (Abs)-treated mice and abolished in germ-free mice. In addition, maltose/miglitol administration increased plasma levels of short-chain fatty acids (SCFAs), carbohydrate-derived metabolites, in the portal vein. GIP suppression by maltose/miglitol was not observed in mice lacking a SCFA receptor Ffar3, but it was normally seen in Ffar2-deficient mice. Similar to maltose/miglitol administration, co-administration of glucose plus a sodium glucose transporter inhibitor phloridzin (glucose/phloridzin) induced GIP suppression, which was again cancelled by Abs treatment. In conclusion, oral administration of carbohydrates with α-glucosidase inhibitors suppresses GIP secretion through a microbiota/SCFA/FFAR3 pathway.


Assuntos
Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , 1-Desoxinojirimicina/análogos & derivados , Animais , Metabolismo dos Carboidratos , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/fisiologia , Inibidores de Glicosídeo Hidrolases , Incretinas/metabolismo , Canais KATP/metabolismo , Maltose , Camundongos , Receptores Acoplados a Proteínas G/metabolismo
5.
J Biol Chem ; 290(5): 2902-18, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25505251

RESUMO

Gut microbial metabolites of polyunsaturated fatty acids have attracted much attention because of their various physiological properties. Dysfunction of tight junction (TJ) in the intestine contributes to the pathogenesis of many disorders such as inflammatory bowel disease. We evaluated the effects of five novel gut microbial metabolites on tumor necrosis factor (TNF)-α-induced barrier impairment in Caco-2 cells and dextran sulfate sodium-induced colitis in mice. 10-Hydroxy-cis-12-octadecenoic acid (HYA), a gut microbial metabolite of linoleic acid, suppressed TNF-α and dextran sulfate sodium-induced changes in the expression of TJ-related molecules, occludin, zonula occludens-1, and myosin light chain kinase. HYA also suppressed the expression of TNF receptor 2 (TNFR2) mRNA and protein expression in Caco-2 cells and colonic tissue. In addition, HYA suppressed the protein expression of TNFR2 in murine intestinal epithelial cells. Furthermore, HYA significantly up-regulated G protein-coupled receptor (GPR) 40 expression in Caco-2 cells. It also induced [Ca(2+)]i responses in HEK293 cells expressing human GPR40 with higher sensitivity than linoleic acid, its metabolic precursor. The barrier-recovering effects of HYA were abrogated by a GPR40 antagonist and MEK inhibitor in Caco-2 cells. Conversely, 10-hydroxyoctadacanoic acid, which is a gut microbial metabolite of oleic acid and lacks a carbon-carbon double bond at Δ12 position, did not show these TJ-restoring activities and down-regulated GPR40 expression. Therefore, HYA modulates TNFR2 expression, at least partially, via the GPR40-MEK-ERK pathway and may be useful in the treatment of TJ-related disorders such as inflammatory bowel disease.


Assuntos
Células Epiteliais/metabolismo , Intestinos/citologia , Ácido Linoleico/metabolismo , Ácidos Oleicos/metabolismo , Animais , Células CACO-2 , Colite/metabolismo , Células Epiteliais/citologia , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Receptores Acoplados a Proteínas G/metabolismo
6.
PLoS One ; 8(11): e79735, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24255712

RESUMO

Although some bacterial strains show potential to prevent colitis, their mechanisms are not fully understood. Here, we investigated the anti-colitic mechanisms of Bifidobacterium longum subsp. infantis JCM 1222(T), focusing on the relationship between interleukin (IL)-17A secreting CD4(+) T cells and intestinal epithelial costimulatory molecules in mice. Oral administration of JCM 1222(T) to mice alleviated dextran sulfate sodium (DSS)-induced acute colitis. The expression of type 1 helper T (Th1)- and IL-17 producing helper T (Th17)-specific cytokines and transcriptional factors was suppressed by JCM 1222(T) treatment. Intestinal epithelial cells (IECs) from colitic mice induced IL-17A production from CD4(+) T cells in a cell-cell contact-dependent manner, and this was suppressed by oral treatment with JCM 1222(T). Using blocking antibodies for costimulatory molecules, we revealed that epithelial costimulatory molecules including CD80 and CD40, which were highly expressed in IECs from colitic mice, were involved in IEC-induced IL-17A response. Treatment of mice and intestinal epithelial cell line Colon-26 cells with JCM 1222(T) decreased the expression of CD80 and CD40. Collectively, these data indicate that JCM 1222(T) negatively regulate epithelial costimulatory molecules, and this effect might be attributed, at least in part, to suppression of IL-17A in DSS-induced colitis.


Assuntos
Bifidobacterium/metabolismo , Colite/metabolismo , Interleucina-17/metabolismo , Animais , Antígeno B7-1/genética , Antígeno B7-1/metabolismo , Antígeno B7-2/genética , Antígeno B7-2/metabolismo , Antígenos CD40/genética , Antígenos CD40/metabolismo , Colite/induzido quimicamente , Colite/genética , Colite/imunologia , Colite/microbiologia , Citocinas/metabolismo , Sulfato de Dextrana/efeitos adversos , Feminino , Regulação da Expressão Gênica , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Células Th17/imunologia , Células Th17/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA