Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
1.
Prostate ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721925

RESUMO

BACKGROUND: Abundant evidence suggests that chronic inflammation is linked to prostate cancer and that infection is a possible cause of prostate cancer. METHODS: To identify microbiota or pathogens associated with prostate cancer, we investigated the transcriptomes of 20 human prostate cancer tissues. We performed de novo assembly of nonhuman sequences from RNA-seq data. RESULTS: We identified four bacteria as candidate microbiota in the prostate, including Moraxella osloensis, Uncultured chroococcidiopsis, Cutibacterium acnes, and Micrococcus luteus. Among these, C. acnes was detected in 19 of 20 prostate cancer tissue samples by immunohistochemistry. We then analyzed the gene expression profiles of prostate epithelial cells infected in vitro with C. acnes and found significant changes in homologous recombination (HR) and the Fanconi anemia pathway. Notably, electron microscopy demonstrated that C. acnes invaded prostate epithelial cells and localized in perinuclear vesicles, whereas analysis of γH2AX foci and HR assays demonstrated impaired HR repair. In particular, BRCA2 was significantly downregulated in C. acnes-infected cells. CONCLUSIONS: These findings suggest that C. acnes infection in the prostate could lead to HR deficiency (BRCAness) which promotes DNA double-strand breaks, thereby increasing the risk of cancer development.

3.
Cancer Gene Ther ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622340

RESUMO

Novel therapeutic strategies are urgently required for osteosarcoma, given the early age at onset and persistently high mortality rate. Modern transcriptomics techniques can identify differentially expressed genes (DEGs) that may serve as biomarkers and therapeutic targets, so we screened for DEGs in osteosarcoma. We found that osteosarcoma cases could be divided into fair and poor survival groups based on gene expression profiles. Among the genes upregulated in the poor survival group, siRNA-mediated knockdown of the glycosylation-related gene C1GALT1 suppressed osteosarcoma cell proliferation in culture. Gene expression, phosphorylation, and glycome array analyses also demonstrated that C1GALT1 is required to maintain ERK signaling and cell cycle progression. Moreover, the C1GALT1 inhibitor itraconazole suppressed osteosarcoma cell proliferation in culture, while doxycycline-induced shRNA-mediated knockdown reduced xenograft osteosarcoma growth in mice. Elevated C1GALT1 expression is a potential early predictor of poor prognosis, while pharmacological inhibition may be a feasible treatment strategy for osteosarcoma.

4.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542276

RESUMO

Azacitidine, a DNA methylation inhibitor, is employed for the treatment of acute myeloid leukemia (AML). However, drug resistance remains a major challenge for effective azacitidine chemotherapy, though several studies have attempted to uncover the mechanisms of azacitidine resistance. With the aim to identify the mechanisms underlying acquired azacitidine resistance in cancer cell lines, we developed a computational strategy that can identify differentially regulated gene networks between drug-sensitive and -resistant cell lines by extending the existing method, differentially coexpressed gene sets (DiffCoEx). The technique specifically focuses on cell line-specific gene network analysis. We applied our method to gene networks specific to azacitidine sensitivity and identified differentially regulated gene networks between azacitidine-sensitive and -resistant cell lines. The molecular interplay between the metallothionein gene family, C19orf33, ELF3, GRB7, IL18, NRN1, and RBM47 were identified as differentially regulated gene network in drug resistant cell lines. The biological mechanisms associated with azacitidine and AML for the markers in the identified networks were verified through the literature. Our results suggest that controlling the identified genes (e.g., the metallothionein gene family) and "cellular response"-related pathways ("cellular response to zinc ion", "cellular response to copper ion", and "cellular response to cadmium ion", where the enriched functional-related genes are MT2A, MT1F, MT1G, and MT1E) may provide crucial clues to address azacitidine resistance in patients with AML. We expect that our strategy will be a useful tool to uncover patient-specific molecular interplay that provides crucial clues for precision medicine in not only gastric cancer but also complex diseases.


Assuntos
Leucemia Mieloide Aguda , Neuropeptídeos , Humanos , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Redes Reguladoras de Genes , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Linhagem Celular Tumoral , Metalotioneína/genética , Metalotioneína/metabolismo , Neuropeptídeos/metabolismo , Proteínas Ligadas por GPI/metabolismo , Proteínas de Ligação a RNA/genética
5.
Cancer Lett ; 581: 216499, 2024 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-38013050

RESUMO

Most of esophageal squamous cell carcinoma (ESCC) develop in smoking males in Japan, but the genomic etiology and immunological characteristics of rare non-smoking female ECSS remain unclear. To elucidate the genomic and immunological features of ESCC in non-smoking females, we analyzed whole-genome or transcriptome sequencing data from 94 ESCCs, including 20 rare non-smoking female cases. In addition, 31,611 immune cells were extracted from four ESCC tissues and subject to single-cell RNA-seq. We compared their immuno-genomic and microbiome profiles between non-smoking female and smoking ESCCs. Non-smoking females showed much better prognosis. Whole-genome sequencing analysis showed no significant differences in driver genes or copy number alterations depending on smoking status. The mutational signatures specifically observed in non-smoking females ESCC could be attributed to aging. Immune profiling from RNA-seq revealed that ESCC in non-smoking females had high tumor microenvironment signatures and a high abundance of eosinophils with a favorable prognosis. Single-cell RNA-sequencing of intratumor immune cells revealed gender differences of eosinophils and their activation in female cases. ESCCs in non-smoking females have age-related mutational signatures and gender-specific tumor immune environment with eosinophils, which is likely to contribute to their favorable prognosis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Masculino , Feminino , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Prognóstico , Genômica , Microambiente Tumoral
6.
NAR Genom Bioinform ; 5(4): lqad090, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37915762

RESUMO

Statistical fine-mapping prioritizes putative causal variants from a large number of candidate variants, and is widely used in expression quantitative loci (eQTLs) studies. In eQTL fine-mapping, the existence of causal variants for gene expression is not guaranteed, since the genetic heritability of gene expression explained by nearby (cis-) variants is limited. Here we introduce a refined fine-mapping algorithm, named Knockoff-Finemap combination (KFc). KFc estimates the probability that the causal variant(s) exist in the cis-window of a gene through construction of knockoff genotypes (i.e. a set of synthetic genotypes that resembles the original genotypes), and uses it to adjust the posterior inclusion probabilities (PIPs). Utilizing simulated gene expression data, we show that KFc results in calibrated PIP distribution with improved precision. When applied to gene expression data of 465 genotyped samples from the Japan COVID-19 Task Force (JCTF), KFc resulted in significant enrichment of a functional score as well as reporter assay hits in the top PIP bins. When combined with functional priors derived from an external fine-mapping study (GTEx), KFc resulted in a significantly higher proportion of hematopoietic trait putative causal variants in the top PIP bins. Our work presents improvements in the precision of a major fine-mapping algorithm.

7.
J Clin Immunol ; 43(8): 2136-2145, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37794136

RESUMO

PURPOSE: The MRE11-RAD50-NBN (MRN) complex plays a key role in recognizing and signaling DNA double-strand breaks. Pathogenic variants in NBN and MRE11 give rise to the autosomal-recessive diseases, Nijmegen breakage syndrome (NBS) and ataxia telangiectasia-like disorder, respectively. The clinical consequences of pathogenic variants in RAD50 are incompletely understood. We aimed to characterize a newly identified RAD50 deficiency/NBS-like disorder (NBSLD) patient with bone marrow failure and immunodeficiency. METHODS: We report on a girl with microcephaly, mental retardation, bird-like face, short stature, bone marrow failure and B-cell immunodeficiency. We searched for candidate gene by whole-exome sequencing and analyzed the cellular phenotype of patient-derived fibroblasts using immunoblotting, radiation sensitivity assays and lentiviral complementation experiments. RESULTS: Compound heterozygosity for two variants in the RAD50 gene (p.Arg83His and p.Glu485Ter) was identified in this patient. The expression of RAD50 protein and MRN complex formation was maintained in the cells derived from this patient. DNA damage-induced activation of the ATM kinase was markedly decreased, which was restored by the expression of wild-type (WT) RAD50. Radiosensitivity appeared inconspicuous in the patient-derived cell line as assessed by colony formation assay. The RAD50R83H missense substitution did not rescue the mitotic defect in complementation experiments using RAD50-deficient fibroblasts, whereas RAD50WT did. The RAD50E485X nonsense variant was associated with in-frame skipping of exon 10 (p.Glu485_545del). CONCLUSION: These findings indicate important roles of RAD50 in human bone marrow and immune cells. RAD50 deficiency/NBSLD can manifest as a distinct inborn error of immunity characterized by bone marrow failure and B-cell immunodeficiency.


Assuntos
Síndromes de Imunodeficiência , Síndrome de Quebra de Nijmegen , Feminino , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteína Homóloga a MRE11/genética , Proteína Homóloga a MRE11/metabolismo , Síndrome de Quebra de Nijmegen/genética , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/genética , Transtornos da Insuficiência da Medula Óssea
8.
Transl Lung Cancer Res ; 12(8): 1738-1751, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37691868

RESUMO

Background: High-grade fetal adenocarcinoma of the lung (H-FLAC) is a rare variant of pulmonary adenocarcinoma. Our previous study showed a high frequency of KMT2C mutations in lung cancers with an H-FLAC component, showing that KMT2C dysfunction may be associated with the biological features of H-FLACs. Methods: In this study, we performed RNA sequencing and immunohistochemical analysis to identify the differentially expressed genes and corresponding pathways associated with H-FLACs, compared with common adenocarcinomas. Results: Ingenuity pathway analysis based on RNA sequencing data revealed that DNA homologous recombination repair (HRR) pathways were significantly inactivated in H-FLAC. Expression of KMT2C, ATM, ATR, and BRCA2 was significantly lower in H-FLACs than in common adenocarcinomas, and BRCA1 expression showed a decreasing trend. Pearson correlation analyses for all cases revealed that KMT2C expression showed a strong positive correlation (R>0.7) with the expression of ATR, BRCA1, and BRCA2 genes and a moderately positive correlation with ATM expression (R=0.47). Immunohistochemical analysis showed significantly lower levels of KMT2C, ATM, ATR, and BRCA2 expression in H-FLACs than in common adenocarcinomas, and a trend of lower BRCA1 levels. Additionally, KMT2C expression showed a weak to moderate correlation with that of ATM, ATR, BRCA1, and BRCA2. Conclusions: Cancers containing H-FLAC components showed lower levels of KMT2C and HRR factors than common lung adenocarcinomas, and their levels exhibited a positive correlation. These results support the hypothesis that loss of KMT2C function decreases the expression of the HRR factors in H-FLACs. H-FLACs with low KMT2C expression may be a good indication for poly (ADP-ribose) polymerase (PARP) inhibitor-based therapy.

9.
PLoS One ; 18(8): e0286044, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37610997

RESUMO

Biological condition-responsive gene network analysis has attracted considerable research attention because of its ability to identify pathways or gene modules involved in the underlying mechanisms of diseases. Although many condition-specific gene network identification methods have been developed, they are based on partial or incomplete gene regulatory network information, with most studies only considering the differential expression levels or correlations among genes. However, a single gene-based analysis cannot effectively identify the molecular interactions involved in the mechanisms underlying diseases, which reflect perturbations in specific molecular network functions rather than disorders of a single gene. To comprehensively identify differentially regulated gene networks, we propose a novel computational strategy called comprehensive analysis of differential gene regulatory networks (CIdrgn). Our strategy incorporates comprehensive information on the networks between genes, including the expression levels, edge structures and regulatory effects, to measure the dissimilarity among networks. We extended the proposed CIdrgn to cell line characteristic-specific gene network analysis. Monte Carlo simulations showed the effectiveness of CIdrgn for identifying differentially regulated gene networks with different network structures and scales. Moreover, condition-responsive network identification in cell line characteristic-specific gene network analyses was verified. We applied CIdrgn to identify gastric cancer and itsf chemotherapy (capecitabine and oxaliplatin) -responsive network based on the Cancer Dependency Map. The CXC family of chemokines and cadherin gene family networks were identified as gastric cancer-specific gene regulatory networks, which was verified through a literature survey. The networks of the olfactory receptor family with the ASCL1/FOS family were identified as capecitabine- and oxaliplatin sensitive -specific gene networks. We expect that the proposed CIdrgn method will be a useful tool for identifying crucial molecular interactions involved in the specific biological conditions of cancer cell lines, such as the cancer stage or acquired anticancer drug resistance.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Redes Reguladoras de Genes , Capecitabina , Oxaliplatina , Caderinas
10.
Breast Cancer Res Treat ; 202(3): 563-573, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37650999

RESUMO

PURPOSE: Low-grade adenosquamous carcinoma (LGASC) is a rare type of metaplastic carcinoma of the breast (MBC) with an indolent clinical course. A few LGASC cases with high-grade transformation have been reported; however, the genetics underlying malignant progression of LGASC remain unclear. METHODS: We performed whole-genome sequencing analysis on five MBCs from four patients, including one case with matching primary LGASC and a lymph node metastatic tumor consisting of high-grade MBC with a predominant metaplastic squamous cell carcinoma component (MSC) that progressed from LGASC and three cases of independent de novo MSC. RESULTS: Unlike de novo MSC, LGASC and its associated MSC showed no TP53 mutation and tended to contain fewer structural variants than de novo MSC. Both LGASC and its associated MSC harbored the common GNAS c.C2530T:p.Arg844Cys mutation, which was more frequently detected in the cancer cell fraction of MSC. MSC associated with LGASC showed additional pathogenic deletions of multiple tumor-suppressor genes, such as KMT2D and BTG1. Copy number analysis revealed potential 18q loss of heterozygosity in both LGASC and associated MSC. The frequency of SMAD4::DCC fusion due to deletions increased with progression to MSC; however, chimeric proteins were not detected. SMAD4 protein expression was already decreased at the LGASC stage due to unknown mechanisms. CONCLUSION: Not only LGASC but also its associated high-grade MBC may be genetically different from de novo high-grade MBC. Progression from LGASC to high-grade MBC may involve the concentration of driver mutations caused by clonal selection and inactivation of tumor-suppressor genes.


Assuntos
Neoplasias da Mama , Carcinoma Adenoescamoso , Carcinoma , Humanos , Feminino , Carcinoma Adenoescamoso/genética , Carcinoma Adenoescamoso/química , Carcinoma Adenoescamoso/patologia , Neoplasias da Mama/patologia , Mama/patologia
11.
Nature ; 620(7974): 607-614, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37495687

RESUMO

Recent studies have documented frequent evolution of clones carrying common cancer mutations in apparently normal tissues, which are implicated in cancer development1-3. However, our knowledge is still missing with regard to what additional driver events take place in what order, before one or more of these clones in normal tissues ultimately evolve to cancer. Here, using phylogenetic analyses of multiple microdissected samples from both cancer and non-cancer lesions, we show unique evolutionary histories of breast cancers harbouring der(1;16), a common driver alteration found in roughly 20% of breast cancers. The approximate timing of early evolutionary events was estimated from the mutation rate measured in normal epithelial cells. In der(1;16)(+) cancers, the derivative chromosome was acquired from early puberty to late adolescence, followed by the emergence of a common ancestor by the patient's early 30s, from which both cancer and non-cancer clones evolved. Replacing the pre-existing mammary epithelium in the following years, these clones occupied a large area within the premenopausal breast tissues by the time of cancer diagnosis. Evolution of multiple independent cancer founders from the non-cancer ancestors was common, contributing to intratumour heterogeneity. The number of driver events did not correlate with histology, suggesting the role of local microenvironments and/or epigenetic driver events. A similar evolutionary pattern was also observed in another case evolving from an AKT1-mutated founder. Taken together, our findings provide new insight into how breast cancer evolves.


Assuntos
Neoplasias da Mama , Linhagem da Célula , Células Clonais , Evolução Molecular , Mutagênese , Mutação , Adolescente , Adulto , Feminino , Humanos , Adulto Jovem , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem da Célula/genética , Células Clonais/metabolismo , Células Clonais/patologia , Epigênese Genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio/patologia , Microdissecção , Taxa de Mutação , Pré-Menopausa , Microambiente Tumoral
12.
Sci Rep ; 13(1): 6744, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185612

RESUMO

Myxofibrosarcoma (MFS) and undifferentiated sarcoma (US) have been considered as tumors of the same lineage based on genetic/epigenetic profiling. Although MFS shows a notably better prognosis than US, there are no clear criteria for distinguishing between them. Here, we examined 85 patients with MFS/US and found that tumors with infiltrative growth patterns tended to have more myxoid areas and higher local recurrence rates but fewer distant metastases and better overall survival. Morphologically characteristic sickle-shaped blood vessels, which tended to have fewer αSMA-positive cells, were also observed in these tumors, compared with normal vessels. Based on the incidence of these sickle-shaped blood vessels, we subdivided conventionally diagnosed US into two groups. This stratification was significantly correlated with metastasis and prognosis. RNA sequencing of 24 tumors (9 MFS and 15 US tumors) demonstrated that the proteasome, NF-kB, and VEGF pathways were differentially regulated among these tumors. Expression levels of KDR and NFATC4, which encode a transcription factor responsible for the neuritin-insulin receptor angiogenic signaling, were elevated in the sickle-shaped blood vessel-rich US tumors. These findings indicate that further analyses may help elucidate the malignant potential of MFS/US tumors as well as the development of therapeutic strategies for such tumors.


Assuntos
Anemia Falciforme , Fibrossarcoma , Histiocitoma Fibroso Maligno , Neoplasias Hepáticas , Sarcoma , Neoplasias de Tecidos Moles , Adulto , Humanos , Sarcoma/genética , Sarcoma/patologia , Fibrossarcoma/genética , Fibrossarcoma/patologia , Prognóstico , Neoplasias de Tecidos Moles/patologia
13.
iScience ; 26(4): 106563, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37123243

RESUMO

Bromodomain-containing protein 8 (BRD8) is a subunit of the NuA4/TIP60-histone acetyltransferase complex. Although BRD8 has been considered to act as a co-activator of the complex, its biological role remains to be elucidated. Here, we uncovered that BRD8 accumulates in colorectal cancer cells through the inhibition of ubiquitin-dependent protein degradation by the interaction with MRG domain binding protein. Transcriptome analysis coupled with genome-wide mapping of BRD8-binding sites disclosed that BRD8 transactivates a set of genes independently of TIP60, and that BRD8 regulates the expression of multiple subunits of the pre-replicative complex in concert with the activator protein-1. Depletion of BRD8 induced cell-cycle arrest at the G1 phase and suppressed cell proliferation. We have also shown that the bromodomain of BRD8 is indispensable for not only the interaction with histone H4 or transcriptional regulation but also its own protein stability. These findings highlight the importance of bromodomain as a therapeutic target.

14.
Br J Cancer ; 128(12): 2206-2217, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37076565

RESUMO

BACKGROUND: Driver alterations may represent novel candidates for driver gene-guided therapy; however, intrahepatic cholangiocarcinoma (ICC) with multiple genomic aberrations makes them intractable. Therefore, the pathogenesis and metabolic changes of ICC need to be understood to develop new treatment strategies. We aimed to unravel the evolution of ICC and identify ICC-specific metabolic characteristics to investigate the metabolic pathway associated with ICC development using multiregional sampling to encompass the intra- and inter-tumoral heterogeneity. METHODS: We performed the genomic, transcriptomic, proteomic and metabolomic analysis of 39-77 ICC tumour samples and eleven normal samples. Further, we analysed their cell proliferation and viability. RESULTS: We demonstrated that intra-tumoral heterogeneity of ICCs with distinct driver genes per case exhibited neutral evolution, regardless of their tumour stage. Upregulation of BCAT1 and BCAT2 indicated the involvement of 'Val Leu Ile degradation pathway'. ICCs exhibit the accumulation of ubiquitous metabolites, such as branched-chain amino acids including valine, leucine, and isoleucine, to negatively affect cancer prognosis. We revealed that this metabolic pathway was almost ubiquitously altered in all cases with genomic diversity and might play important roles in tumour progression and overall survival. CONCLUSIONS: We propose a novel ICC onco-metabolic pathway that could enable the development of new therapeutic interventions.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Proteômica , Aminoácidos de Cadeia Ramificada , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/genética , Transaminases
15.
Genes Chromosomes Cancer ; 62(7): 412-422, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37102302

RESUMO

Pediatric acute myeloid leukemia (AML) is a poor prognostic subtype of pediatric leukemia. However, the detailed characteristics of many genetic abnormalities are yet to be established in this disease. Although TP53 and RB1 are established as representative tumor suppressor genes in various cancers, alterations of these two genes, especially RB1, have not been characterized in pediatric AML. We performed next-generation sequencing in 328 pediatric AML patients from the Japanese AML-05 trial to ascertain TP53 and RB1 alterations, and their prognostic implications. We identified seven patients with TP53 alterations (2.1%) and six patients with RB1 alterations (1.8%). These alterations were found in only patients without RUNX1::RUNX1T1, CBFB::MYH11, or KMT2A rearrangements. TP53 and RB1 were frequently co-deleted with their neighboring genes PRPF8 and ELF1, respectively. Patients with TP53 alterations had significantly lower 5-year overall survival (OS; 14.3% vs. 71.4%, p < 0.001) and lower 5-year event-free survival (EFS; 0% vs. 56.3%, p < 0.001); similarly, patients with RB1 had significantly lower 5-year OS (0% vs. 71.8%, p < 0.001) and lower 5-year EFS (0% vs. 56.0%, p < 0.001) when compared to patients without these alterations. In gene expression analyses, oxidative phosphorylation, glycolysis, and protein secretion were upregulated in patients with TP53 and/or RB1 alterations. Additionally, Kaplan-Meier analysis revealed that high expressions of SLC2A5, KCNAB2, and CD300LF were related to poor OS of non-core-binding factor AML patients (p < 0.001, p = 0.001, and p = 0.021, respectively). This study will contribute to the development of risk-stratified therapy and precision medicine in pediatric AML.


Assuntos
Leucemia Mieloide Aguda , Humanos , Criança , Mutação , Leucemia Mieloide Aguda/patologia , Prognóstico , Estimativa de Kaplan-Meier , Proteína Supressora de Tumor p53/genética , Transportador de Glucose Tipo 5/genética , Ubiquitina-Proteína Ligases/genética , Proteínas de Ligação a Retinoblastoma/genética
16.
Blood Adv ; 7(14): 3624-3636, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-36989067

RESUMO

Azacitidine is a mainstay of therapy for myelodysplastic syndrome (MDS)-related diseases. The purpose of our study is to elucidate the effect of gene mutations on hematological response and overall survival (OS), particularly focusing on their posttreatment clone size. We enrolled a total of 449 patients with MDS or related myeloid neoplasms. They were analyzed for gene mutations in pretreatment (n = 449) and posttreatment (n = 289) bone marrow samples using targeted-capture sequencing to assess the impact of gene mutations and their posttreatment clone size on treatment outcomes. In Cox proportional hazard modeling, multihit TP53 mutation (hazard ratio [HR], 2.03; 95% confidence interval [CI], 1.42-2.91; P < .001), EZH2 mutation (HR, 1.71; 95% CI, 1.14-2.54; P = .009), and DDX41 mutation (HR, 0.33; 95% CI, 0.17-0.62; P < .001), together with age, high-risk karyotypes, low platelets, and high blast counts, independently predicted OS. Posttreatment clone size accounting for all drivers significantly correlated with International Working Group (IWG) response (P < .001, using trend test), except for that of DDX41-mutated clones, which did not predict IWG response. Combined, IWG response and posttreatment clone size further improved the prediction of the original model and even that of a recently proposed molecular prediction model, the molecular International Prognostic Scoring System (IPSS-M; c-index, 0.653 vs 0.688; P < .001, using likelihood ratio test). In conclusion, evaluation of posttreatment clone size, together with the pretreatment mutational profile as well as the IWG response play a role in better prognostication of azacitidine-treated patients with myelodysplasia.


Assuntos
Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Neoplasias , Humanos , Prognóstico , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Resultado do Tratamento , Azacitidina
17.
Blood ; 141(5): 534-549, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36322930

RESUMO

Germ line DDX41 variants have been implicated in late-onset myeloid neoplasms (MNs). Despite an increasing number of publications, many important features of DDX41-mutated MNs remain to be elucidated. Here we performed a comprehensive characterization of DDX41-mutated MNs, enrolling a total of 346 patients with DDX41 pathogenic/likely-pathogenic (P/LP) germ line variants and/or somatic mutations from 9082 MN patients, together with 525 first-degree relatives of DDX41-mutated and wild-type (WT) patients. P/LP DDX41 germ line variants explained ∼80% of known germ line predisposition to MNs in adults. These risk variants were 10-fold more enriched in Japanese MN cases (n = 4461) compared with the general population of Japan (n = 20 238). This enrichment of DDX41 risk alleles was much more prominent in male than female (20.7 vs 5.0). P/LP DDX41 variants conferred a large risk of developing MNs, which was negligible until 40 years of age but rapidly increased to 49% by 90 years of age. Patients with myelodysplastic syndromes (MDS) along with a DDX41-mutation rapidly progressed to acute myeloid leukemia (AML), which was however, confined to those having truncating variants. Comutation patterns at diagnosis and at progression to AML were substantially different between DDX41-mutated and WT cases, in which none of the comutations affected clinical outcomes. Even TP53 mutations made no exceptions and their dismal effect, including multihit allelic status, on survival was almost completely mitigated by the presence of DDX41 mutations. Finally, outcomes were not affected by the conventional risk stratifications including the revised/molecular International Prognostic Scoring System. Our findings establish that MDS with DDX41-mutation defines a unique subtype of MNs that is distinct from other MNs.


Assuntos
RNA Helicases DEAD-box , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Adulto , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , RNA Helicases DEAD-box/genética , Células Germinativas , Leucemia Mieloide Aguda/genética , Mutação , Síndromes Mielodisplásicas/genética , Transtornos Mieloproliferativos/genética
18.
Int J Infect Dis ; 128: 121-127, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36563958

RESUMO

OBJECTIVES: Smoking and chronic obstructive pulmonary disease (COPD) are risk factors for severe COVID-19. However, limited literature exists on the effect of COPD and smoking on COVID-19 outcomes. This study examined the impact of smoking exposure in pack-years (PY) and COPD on COVID-19 outcomes among smokers in Japan. METHODS: The study included 1266 smokers enrolled by the Japan COVID-19 task force between February 2020 and December 2021. PY and COPD status was self-reported by patients. Patients were classified into the non-COPD (n = 1151) and COPD (n = 115) groups; the non-COPD group was further classified into <10 PY (n = 293), 10-30 PY (n = 497), and >30 PY (n = 361). The study outcome was the need for invasive mechanical ventilation (IMV). RESULTS: The incidence of IMV increased with increasing PY and was highest in the COPD group (<10 PY = 7.8%, 10-30 PY = 12.3%, >30 PY = 15.2%, COPD = 26.1%; P <0.001). A significant association was found for IMV requirement in the >30 PY and COPD groups through univariate (odds ratio [OR]: >30 PY = 2.11, COPD = 4.14) and multivariate (OR: >30 PY = 2.38; COPD = 7.94) analyses. Increasing PY number was also associated with increased IMV requirement in patients aged <65 years. CONCLUSION: Cumulative smoking exposure was positively associated with COVID-19 outcomes in smokers.


Assuntos
COVID-19 , Doença Pulmonar Obstrutiva Crônica , Humanos , Japão , COVID-19/complicações , Fumar/efeitos adversos , Fatores de Risco
19.
J Comput Biol ; 30(2): 223-243, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36450117

RESUMO

The complex mechanisms of diseases involve the disturbance of the molecular network, rather than disorder in a single gene, implying that single gene-based analysis is insufficient to understand these mechanisms. Gene regulatory networks (GRNs) have attracted a lot of interest and various approaches have been developed for their statistical inference and gene network-based analysis. Although various computational methods have been developed, relatively little attention has been paid to incorporation of biological knowledge into the computational approaches. Furthermore, existing studies on network-based analysis perform prediction/classification of status of cell lines based on preconstructed GRNs, implying that we cannot extract prediction/classification-specific gene networks, leading to difficulty in interpretation of biological mechanisms and marker identification related to the status of cancer cell lines. We developed a novel strategy to build a GRN-based classifier, called a GRN-classifier. The proposed GRN-classifier estimates GRNs and classifies cell lines simultaneously, where the gene network is estimated to minimize error in gene network estimation and the negative log-likelihood for classifying cell lines. Thus, we can identify biological status-specific gene regulatory systems, enabling us to achieve biologically reliable interpretation of the classification. We also propose an algorithm to implement the GRN-classifier based on coordinate descent update. Monte Carlo simulations were conducted to examine performance of the GRN-classifier. Results: Our strategy provides effective results in feature selection in the classification model and edge selection in gene network estimation. The GRN-classifier also shows outstanding classification accuracy. We apply the GRN-classifier to classify cancer cell lines into anticancer drug-related status, that is, 5-fluorouracil (5-FU)-sensitive/resistant and 5-FU target/nontarget cancer cell lines. We then identified 5-FU markers based on 5-FU-related status classification-specific gene networks. The mechanisms of the identified markers were verified through literature survey. Our results suggest that the molecular interplay between MYOF and AHNAK2 may play a crucial role in drug resistance and can provide information on the chemotherapy efficiency of 5-FU. It is also suggested that suppression of the identified 5-FU markers, including MYOF/AHNAK2 and AKR1C1/AKR1C3 may improve 5-FU resistance of cancer cell lines.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Humanos , Redes Reguladoras de Genes , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Fluoruracila/farmacologia , Biologia Computacional/métodos , Algoritmos
20.
Genes Chromosomes Cancer ; 62(4): 202-209, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36448876

RESUMO

The prognosis of pediatric acute myeloid leukemia (AML) has improved via stratification therapy. However, relapse or death occurs in 30%-40% of cases. Novel genetic factors for pediatric AML need to be elucidated to improve prognosis. We detected recurrent internal tandem duplication in upstream binding transcription factor (UBTF-ITD) in 1.2% (6/503) of Japanese pediatric patients with de novo AML. No UBTF-ITD was detected in 175 adult patients with AML or in 65 cell lines that included 15 AML, 39 acute lymphoblastic leukemia, five chronic myeloid leukemia, and six neuroblastoma cell lines. All UBTF-ITDs were found in exon 13 and shared a duplicated region. UBTF-ITD was more frequently detected in patients with trisomy 8, FLT3-ITD, WT1 mutation, and/or high PRDM16 expression (trisomy 8, 3/6; FLT3-ITD, 5/6; WT1 mutation, 2/6; and high PRDM16 expression, 6/6). Gene expression patterns of patients with UBTF-ITD were similar to those of patients with NUP98::NSD1 or FUS::ERG. Survival analysis of the AML-05 cohort revealed that patients with UBTF-ITD had worse outcomes than those without UBTF-ITD (3-year event-free survival, 20% vs. 55%; 3-year overall survival, 40% vs. 74%). Moreover, among the 27 patients with trisomy 8, all three patients with UBTF -ITD had a poor prognosis resulting in early events (relapse or non-complete remission) within 1 year. Our findings suggest that UBTF-ITD may be a novel and significant prognostic factor for pediatric patients with AML.


Assuntos
Leucemia Mieloide Aguda , Adulto , Criança , Humanos , Tirosina Quinase 3 Semelhante a fms/genética , Mutação , Prognóstico , Recidiva , Trissomia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA