Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 3664, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574459

RESUMO

Vagus nerve stimulation has shown many benefits for disease therapies but current approaches involve imprecise electrical stimulation that gives rise to off-target effects, while the functionally relevant pathways remain poorly understood. One method to overcome these limitations is the use of optogenetic techniques, which facilitate targeted neural communication with light-sensitive actuators (opsins) and can be targeted to organs of interest based on the location of viral delivery. Here, we tested whether retrograde adeno-associated virus (rAAV2-retro) injected in the heart can be used to selectively express opsins in vagus nerve fibers controlling cardiac function. Furthermore, we investigated whether perturbations in cardiac function could be achieved with photostimulation at the cervical vagus nerve. Viral injection in the heart resulted in robust, primarily afferent, opsin reporter expression in the vagus nerve, nodose ganglion, and brainstem. Photostimulation using both one-photon stimulation and two-photon holography with a GRIN-lens incorporated nerve cuff, was tested on the pilot-cohort of injected mice. Changes in heart rate, surface electrocardiogram, and respiratory responses were observed in response to both one- and two-photon photostimulation. The results demonstrate feasibility of retrograde labeling for organ targeted optical neuromodulation.


Assuntos
Dependovirus/genética , Coração/virologia , Opsinas/genética , Nervo Vago/metabolismo , Animais , Estimulação Elétrica , Coração/fisiopatologia , Frequência Cardíaca/genética , Frequência Cardíaca/fisiologia , Humanos , Camundongos , Neurônios/metabolismo , Neurônios/virologia , Optogenética/métodos , Respiração/genética , Nervo Vago/fisiologia , Nervo Vago/virologia , Estimulação do Nervo Vago/métodos
2.
J Neurosci Res ; 91(10): 1363-70, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23900858

RESUMO

Among noninvasive functional brain imaging techniques, (18) F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) has a comparative advantage in detecting active brain regions in freely locomoting animals. We developed an [(18) F]FDG-PET protocol that visualizes active brain regions that respond preferentially to citrate-induced multiple behaviors in freely locomoting rats. In addition, c-Fos immunohistochemistry, an activity-dependent mapping, was performed to examine whether the areas detected by PET correspond to regions with c-Fos-immunopositive neurons. Citrate (0.1 M) was intraorally applied to detect activated brain regions responding to gustation and the rejection behaviors including gaping and tongue protrusion, which would potently activate the limbic system. PET images during citrate stimulation were subtracted from those obtained during free locomotion or during application of distilled water. Citrate increased FDG signals in multiple gustation-related regions: the nucleus accumbens (core and shell), the ventromedial nucleus of the thalamus, the basolateral and central nuclei of the amygdala, the hypothalamus, and the insular cortex. In addition, the ventrolateral striatum and the cingulate and entorhinal cortices, which have received less attention in the field of gustatory studies, also showed an increase in FDG signals. As expected, c-Fos-immunopositive cells were also found in these regions, suggesting that increased FDG signals induced by intraoral citrate injection are likely to reflect neural activity in these regions. Our [(18) F]FDG-PET protocol reveals the contributions of multiple brain regions responding to aversive taste in freely locomoting rats, and this approach may aid in the identification of unknown neural networks especially relating to the limbic information processing.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Percepção Gustatória/fisiologia , Animais , Estado de Consciência , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA