Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 531(4): 502-514, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36453284

RESUMO

Roughly 20% of the neurons in the mouse cortex are inhibitory interneurons (INs). Of these, the three major subtypes are parvalbumin (PV), somatostatin (SST), and vasoactive intestinal polypeptide (VIP) expressing neurons. We used monosynaptic rabies tracing to compare the presynaptic input landscape onto these three IN subtypes in the mouse primary auditory cortex (A1). We compared both local patterns of monosynaptic inputs as well as long-range input patterns. The local monosynaptic input landscape to SST neurons was more widespread as compared to PV and VIP neurons. The brain-wide input landscape was rich and heterogeneous with >40 brain regions connecting to all the three INs subtypes from both hemispheres. The general pattern of the long-range input landscape was similar among the groups of INs. Nevertheless, a few differences could be identified. At low resolution, the proportion of local versus long-range inputs was smaller for PV neurons. At mesoscale resolution, we found fewer inputs from temporal association area to VIP INs, and more inputs to SST neurons from basal forebrain and lateral amygdala. Our work can be used as a resource for a quantitative comparison of the location and level of inputs impinging onto discrete populations of neurons in mouse A1.


Assuntos
Córtex Auditivo , Camundongos , Animais , Córtex Auditivo/metabolismo , Neurônios/metabolismo , Interneurônios/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Encéfalo/metabolismo , Parvalbuminas/metabolismo
2.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499729

RESUMO

Cutaneous squamous cell carcinoma (CSCC) is an epidermal skin cancer that evolves from normal epidermis along several pre-malignant stages. Previously we found specific miRNAs alterations in each step along these stages. miR-199a-3p expression decreases at the transition to later stages. A crucial step for epithelial carcinoma cells to acquire invasive capacity is the disruption of cell-cell contacts and the gain of mesenchymal motile phenotype, a process known as epithelial-to-mesenchymal transition (EMT). This study aims to study the role of decreased expression of miR-199a-3p in keratinocytes' EMT towards carcinogenesis. First, we measured miR-199a-3p in different stages of epidermal carcinogenesis. Then, we applied Photoactivatable Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) assay to search for possible biochemical targets of miR-199a-3p and verified that Ras-associated protein B2 (RAP2B) is a bona-fide target of miR-199a-3p. Next, we analyzed RAP2B expression, in CSCC biopsies. Last, we evaluated possible mechanisms leading to decreased miR-199a-3p expression. miR-199a-3p induces a mesenchymal to epithelial transition (MET) in CSSC cells. Many of the under-expressed genes in CSCC overexpressing miR-199a-3p, are possible targets of miR-199a-3p and play roles in EMT. RAP2B is a biochemical target of miR-199a-3p. Overexpression of miR-199a-3p in CSCC results in decreased phosphorylated focal adhesion kinase (FAK). In addition, inhibiting FAK phosphorylation inhibits EMT marker genes' expression. In addition, we proved that DNA methylation is part of the mechanism by which miR-199a-3p expression is inhibited. However, it is not by the methylation of miR-199a putative promoter. These findings suggest that miR-199a-3p inhibits the EMT process by targeting RAP2B. Inhibitors of RAP2B or FAK may be effective therapeutic agents for CSCC.


Assuntos
Carcinoma de Células Escamosas , MicroRNAs , Neoplasias Cutâneas , Humanos , Carcinoma de Células Escamosas/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas ras/metabolismo , Linhagem Celular Tumoral , Neoplasias Cutâneas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Transição Epitelial-Mesenquimal/genética , Proliferação de Células , Proteínas rap de Ligação ao GTP/genética , Proteínas rap de Ligação ao GTP/metabolismo
3.
J Neurosci ; 42(23): 4629-4651, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35477904

RESUMO

Stimulus-specific adaptation (SSA) is the reduction in responses to frequent stimuli (standards) that does not generalize to rare stimuli (deviants). We investigated the contribution of inhibition in auditory cortex to SSA using two-photon targeted cell-attached recordings and optogenetic manipulations in male mice. We characterized the responses of parvalbumin (PV)-, somatostatin (SST)-, and vasoactive intestinal polypeptide (VIP)-expressing interneurons of layer 2/3, and of serotonin receptor 5HT3a-expressing interneurons of layer 1. All populations showed early-onset SSA. Unexpectedly, the PV, SST, and VIP populations exhibited a substantial late component of evoked activity, often stronger for standard than for deviant stimuli. Optogenetic suppression of PV neurons facilitated pyramidal neuron responses substantially more (approximately ×10) for deviants than for standards. VIP suppression decreased responses of putative PV neurons, specifically for standard but not for deviant stimuli. Thus, the inhibitory network does not generate cortical SSA, but powerfully controls its expression by differentially affecting the responses to deviants and to standards.SIGNIFICANCE STATEMENT Stimulus-specific adaptation (SSA) reflects the growing complexity of auditory processing along the ascending auditory system. In the presence of SSA, neuronal responses depend not only on the stimulus itself but also on the history of stimulation. Strong SSA in the fast, ascending auditory pathway first occurs in cortex. Here we studied the role of the cortical inhibitory network in shaping SSA, showing that while cortical inhibition does not generate SSA, it powerfully controls its expression. We deduce that the cortical network contributes in crucial ways to the properties of SSA.


Assuntos
Córtex Auditivo , Animais , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Interneurônios/fisiologia , Masculino , Camundongos , Parvalbuminas/metabolismo , Células Piramidais/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo
4.
PLoS Biol ; 18(2): e3000613, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32027647

RESUMO

Cortical interneurons expressing vasoactive intestinal polypeptide (VIP) and choline acetyltransferase (ChAT) are sparsely distributed throughout the neocortex, constituting only 0.5% of its neuronal population. The co-expression of VIP and ChAT suggests that these VIP/ChAT interneurons (VChIs) can release both γ-aminobutyric acid (GABA) and acetylcholine (ACh). In vitro physiological studies quantified the response properties and local connectivity patterns of the VChIs; however, the function of VChIs has not been explored in vivo. To study the role of VChIs in cortical network dynamics and their long-range connectivity pattern, we used in vivo electrophysiology and rabies virus tracing in the barrel cortex of mice. We found that VChIs have a low spontaneous spiking rate (approximately 1 spike/s) in the barrel cortex of anesthetized mice; nevertheless, they responded with higher fidelity to whisker stimulation than the neighboring layer 2/3 pyramidal neurons (Pyrs). Analysis of long-range inputs to VChIs with monosynaptic rabies virus tracing revealed that direct thalamic projections are a significant input source to these cells. Optogenetic activation of VChIs in the barrel cortex of awake mice suppresses the sensory responses of excitatory neurons in intermediate amplitudes of whisker deflections while increasing the evoked spike latency. The effect of VChI activation on the response was similar for both high-whisking (HW) and low-whisking (LW) conditions. Our findings demonstrate that, despite their sparsity, VChIs can effectively modulate sensory processing in the cortical microcircuit.


Assuntos
Colina O-Acetiltransferase/metabolismo , Interneurônios/fisiologia , Córtex Somatossensorial/citologia , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Colina O-Acetiltransferase/genética , Potenciais Evocados , Potenciais Pós-Sinápticos Inibidores , Integrases/genética , Interneurônios/metabolismo , Camundongos , Camundongos Transgênicos , Vias Neurais , Neurônios/metabolismo , Neurônios/fisiologia , Optogenética , Córtex Somatossensorial/metabolismo , Peptídeo Intestinal Vasoativo/genética , Núcleos Ventrais do Tálamo/metabolismo , Vibrissas
5.
Development ; 137(2): 261-71, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20040492

RESUMO

The angiogenic factor vascular endothelial growth factor A (VEGF) has been shown to have a role in neurogenesis, but how it affects adult neurogenesis is not fully understood. To delineate a role for VEGF in successive stages of olfactory bulb (OB) neurogenesis, we used a conditional transgenic system to suppress VEGF signaling at the adult mouse sub-ventricular zone (SVZ), rostral migratory stream (RMS) and OB, which constitute the respective sites of birth, the migration route, and sites where newly born interneurons mature and integrate within the existing OB circuitry. Following the development of fluorescently tagged adult-born neurons, we show that sequestration of VEGF that is constitutively expressed by distinct types of resident OB neurons greatly impaired dendrite development in incoming SVZ-born neurons. This was evidenced by reduced dendritic spine density of granule cells and significantly shorter and less branched dendrites in periglomerular neurons. Notably, the vasculature and perfusion of the SVZ, RMS and OB were not adversely affected when VEGF suppression was delayed until after birth, thus uncoupling the effect of VEGF on dendritogenesis from its known role in vascular maintenance. Furthermore, a requirement for VEGF was specific to newly born neurons, as already established OB neurons were not damaged by VEGF inhibition. This study thus uncovered a surprising perfusion-independent role of VEGF in the adult brain, namely, an essential role in the maturation of adult-born neurons.


Assuntos
Dendritos/metabolismo , Interneurônios/citologia , Interneurônios/metabolismo , Neurogênese/fisiologia , Bulbo Olfatório , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Neurogênese/genética , Bulbo Olfatório/citologia , Bulbo Olfatório/embriologia , Bulbo Olfatório/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA