Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892135

RESUMO

Podophyllotoxin (PPT) is an active pharmaceutical ingredient (API) with established antitumor potential. However, due to its systemic toxicity, its use is restricted to topical treatment of anogenital warts. Less toxic PPT derivatives (e.g., etoposide and teniposide) are used intravenously as anticancer agents. PPT has been exploited as a scaffold of new potential therapeutic agents; however, fewer studies have been conducted on the parent molecule than on its derivatives. We have undertaken a study of ultrastructural changes induced by PPT on HaCaT keratinocytes. We have also tracked the intracellular localization of PPT using its fluorescent derivative (PPT-FL). Moreover, we performed molecular docking of both PPT and PPT-FL to compare their affinity to various binding sites of tubulin. Using the Presto blue viability assay, we established working concentrations of PPT in HaCaT cells. Subsequently, we have used selected concentrations to determine PPT effects at the ultrastructural level. Dynamics of PPT distribution by confocal microscopy was performed using PPT-FL. Molecular docking calculations were conducted using Glide. PPT induces a time-dependent cytotoxic effect on HaCaT cells. Within 24 h, we observed the elongation of cytoplasmic processes, formation of cytoplasmic vacuoles, progressive ER stress, and shortening of the mitochondrial long axis. After 48 h, we noticed disintegration of the cell membrane, progressive vacuolization, apoptotic/necrotic vesicles, and a change in the cell nucleus's appearance. PPT-FL was detected within HaCaT cells after ~10 min of incubation and remained within cells in the following measurements. Molecular docking confirmed the formation of a stable complex between tubulin and both PPT and PPT-FL. However, it was formed at different binding sites. PPT is highly toxic to normal human keratinocytes, even at low concentrations. It promptly enters the cells, probably via endocytosis. At lower concentrations, PPT causes disruptions in both ER and mitochondria, while at higher concentrations, it leads to massive vacuolization with subsequent cell death. The novel derivative of PPT, PPT-FL, forms a stable complex with tubulin, and therefore, it is a useful tracker of intracellular PPT binding and trafficking.


Assuntos
Células HaCaT , Queratinócitos , Simulação de Acoplamento Molecular , Podofilotoxina , Tubulina (Proteína) , Humanos , Podofilotoxina/análogos & derivados , Podofilotoxina/farmacologia , Podofilotoxina/química , Tubulina (Proteína)/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Corantes Fluorescentes/química , Sítios de Ligação , Estresse do Retículo Endoplasmático/efeitos dos fármacos
2.
Pharmacol Rep ; 76(1): 127-139, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38082190

RESUMO

BACKGROUND: Chronic inflammation in the course of inflammatory bowel disease may result in colon cancer, or colitis-associated colorectal cancer (CACRC). It is well established that CACRC is associated with oxidative stress and secretion of multiple pro-inflammatory cytokines, e.g. tumor necrosis factor-α. Recently, we proved that the administration of gold(III) complexes resulted in the alleviation of acute colitis in mice. The aim of the current study was to assess the antitumor effect of a novel series of gold(III) complexes: TGS 121, 404, 512, 701, 702, and 703. MATERIALS: Analyzed gold(III) complexes were screened in the in vitro studies using colorectal cancer and normal colon epithelium cell lines, SW480, HT-29, and CCD 841 CoN, and in vivo, in the CACRC mouse model. RESULTS: Of all tested complexes, TGS 121, 404, and 702 exhibited the strongest anti-tumor effect in in vitro viability assay of colon cancer cell lines and in in vivo CACRC model, in which these complexes decreased the total number of colonic tumors and macroscopic score. We also evidenced that the mechanism of action was linked to the enzymatic antioxidant system and inflammatory cytokines. CONCLUSIONS: TGS 121, 404, and 702 present anti-tumor potential and are an attractive therapeutic option for colorectal cancer.


Assuntos
Colite , Neoplasias do Colo , Neoplasias Colorretais , Humanos , Camundongos , Animais , Ouro/farmacologia , Ouro/metabolismo , Ouro/uso terapêutico , Colite/complicações , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colo , Neoplasias do Colo/metabolismo , Citocinas/metabolismo , Células HT29 , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Sulfato de Dextrana/farmacologia , Camundongos Endogâmicos C57BL
3.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569518

RESUMO

Homotypic entosis is a phenomenon in which one cancer cell invades a neighboring cancer cell and is closed entirely within its entotic vacuole. The fate of entosis can lead to inner cell death or survival. Recent evidence draws attention to entosis as a novel prognostic marker in breast cancer. Nevertheless, little is known about the quantity and quality of the process of entosis in human cancer specimens. Here, for the first time, we analyze the frequency of entotic figures in a case of NOS (Non-Other Specified) breast cancer with regard to location: the primary tumor, regional lymph node, and distant metastasis. For the identification of entotic figures, cells were stained using hematoxylin/eosin and assessed using criteria proposed by Mackay. The majority of entotic figures (65%) were found in the lymph node, 27% were found in the primary tumor, and 8% were found in the far metastasis. In the far metastases, entotic figures demonstrated an altered, atypic morphology. Interestingly, in all locations, entosis did not show any signs of cell death. Moreover, the slides were stained for E-cadherin or Ki67, and we identified proliferating (Ki67-positive) inner and outer entotic cells. Therefore, we propose additional criteria for the identification of pro-survival entotic structures in diagnostic histopathology.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Entose/fisiologia , Antígeno Ki-67 , Morte Celular
4.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047791

RESUMO

Homotypic entotic figures, which are a form of "cell-in-cell" structures, are considered a potential novel independent prognostic marker in various cancers. Nevertheless, the knowledge concerning the biological role of this phenomenon is still unclear. Since breast cancer cells are remarkably entosis-competent, we aimed to investigate and compare the frequency of entoses in a primary breast tumor and in its lymph node metastasis. Moreover, as there are limited data on defined molecular markers of entosis, we investigated entosis in correlation with classical breast cancer biomarkers used in routine pathomorphological diagnostics (HER2, ER, PR, and Ki67). In the study, a cohort of entosis-positive breast cancer samples paired into primary lesions and lymph node metastases was used. The inclusion criteria were a diagnosis of NOS cancer, lymph node metastases, the presence of entotic figures in the primary lesion, and/or lymph node metastases. In a selected, double-negative, HER2-positive NOS breast cancer case, entoses were characterized by a correlation between an epithelial-mesenchymal transition and proliferation markers. We observed that in the investigated cohort entotic figures were positively correlated with Ki67 and HER2, but not with ER or PR markers. Moreover, for the first time, we identified Ki67-positive mitotic inner entotic cells in clinical carcinoma samples. Our study performed on primary and secondary breast cancer specimens indicated that entotic figures, when examined by routine HE histological staining, present potential diagnostic value, since they correlate with two classical prognostic factors of breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Biomarcadores Tumorais , Antígeno Ki-67 , Receptor ErbB-2 , Entose , Metástase Linfática , Receptores de Estrogênio , Receptores de Progesterona
5.
Toxicol In Vitro ; 88: 105556, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36681286

RESUMO

Metal-based agents in cancer therapy, like cisplatin and its derivates, have established clinical applications but also can induce serious side effects. Thus, metallotherapeutic alternatives for platinum derivatives are developed and intensively studied. Platinum is replaced by several transition metals including gold. Especially gold (III) complexes can have the same square-planar structure and are isoelectric with platinum (II). Hence, they are developed as potential anti-cancer drugs. Thus, our group projected and developed a group of novel cyanide-based gold (III) complexes. Within this work, we aimed to characterize the safety and effectivity of one of them, TGS 121. TGS 121 in our preliminary work was selective for Ras-hyperactivated cells. Here we studied the effects of the novel complex in cancerous Ras-3 T3 and non-cancerous NIH-3 T3 cells. The complex TGS 121 turned out to be non-toxic for NIH-3 T3 cells and to induce death and alternations in Ras-hyperactivated cells. We found induction of ER stress, mitochondria swelling, proteasome inhibition, and cell cycle block. Moreover, TGS 121 inhibited cell migration and induced the accumulation of perinuclear organelles that was secondary to proteasome inhibition. Results presented in this report suggest that stable gold-cyanide TGS 121 complex is non-toxic, with a targeted mechanism of action and it is promising in anticancer drug discovery.


Assuntos
Antineoplásicos , Complexo de Endopeptidases do Proteassoma , Platina/química , Cianetos/toxicidade , Antineoplásicos/toxicidade , Antineoplásicos/química , Ouro/toxicidade , Ouro/química , Linhagem Celular Tumoral
6.
Int J Mol Sci ; 23(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35054907

RESUMO

Cancer is one of the leading causes of morbidity and mortality worldwide. Colorectal cancer (CRC) is the third most frequently diagnosed cancer in men and the second in women. Standard patterns of antitumor therapy, including cisplatin, are ineffective due to their lack of specificity for tumor cells, development of drug resistance, and severe side effects. For this reason, new methods and strategies for CRC treatment are urgently needed. Current research includes novel platinum (Pt)- and other metal-based drugs such as gold (Au), silver (Ag), iridium (Ir), or ruthenium (Ru). Au(III) compounds are promising drug candidates for CRC treatment due to their structural similarity to Pt(II). Their advantage is their relatively good solubility in water, but their disadvantage is an unsatisfactory stability under physiological conditions. Due to these limitations, work is still underway to improve the formula of Au(III) complexes by combining with various types of ligands capable of stabilizing the Au(III) cation and preventing its reduction under physiological conditions. This review summarizes the achievements in the field of stable Au(III) complexes with potential cytotoxic activity restricted to cancer cells. Moreover, it has been shown that not nucleic acids but various protein structures such as thioredoxin reductase (TrxR) mediate the antitumor effects of Au derivatives. The state of the art of the in vivo studies so far conducted is also described.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Desenvolvimento de Medicamentos , Ouro/química , Animais , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores , Estudos Clínicos como Assunto , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/etiologia , Neoplasias do Colo/metabolismo , Terapia Combinada , Complexos de Coordenação/uso terapêutico , Gerenciamento Clínico , Suscetibilidade a Doenças , Relação Dose-Resposta a Droga , Desenvolvimento de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos , Humanos , Estrutura Molecular , Metástase Neoplásica , Estadiamento de Neoplasias , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
7.
Cells ; 10(10)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34685548

RESUMO

A phenomenon known for over 100 years named "cell-in-cell" (CIC) is now undergoing its renaissance, mostly due to modern cell visualization techniques. It is no longer an esoteric process studied by a few cell biologists, as there is increasing evidence that CICs may have prognostic and diagnostic value for cancer patients. There are many unresolved questions stemming from the difficulties in studying CICs and the limitations of current molecular techniques. CIC formation involves a dynamic interaction between an outer or engulfing cell and an inner or engulfed cell, which can be of the same (homotypic) or different kind (heterotypic). Either one of those cells appears to be able to initiate this process, which involves signaling through cell-cell adhesion, followed by cytoskeleton activation, leading to the deformation of the cellular membrane and movements of both cells that subsequently result in CICs. This review focuses on the distinction of five known forms of CIC (cell cannibalism, phagoptosis, enclysis, entosis, and emperipolesis), their unique features, characteristics, and underlying molecular mechanisms.


Assuntos
Comunicação Celular/fisiologia , Entose/fisiologia , Emperipolese/fisiologia , Humanos
8.
Toxicol In Vitro ; 73: 105144, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33722735

RESUMO

Podophyllotoxin (PPT) is an antimitotic drug used topically in the treatment of anogenital warts. Due to its toxicity it cannot be administered systemically as an anticancer agent. However, modified PPT derivatives such as etoposide and teniposide are used clinically as systemic agents. Thus, we invented novel PPT derivative KL3 that was synthesized by photocyclization. Earlier we have shown that KL3 has an anticancer effect in various cell lines. Here we compared the toxicity of KL3 vs PPT on non-cancerous normal human keratinocytes (HaCaT) and peripheral blood mononuclear cells (PBMC) showing that KL3 is less toxic than PPT to non-cancerous cells. At concentrations that neither induced cell death, nor affected cell cycle, KL3 in HaCaT cells evoked transient ultrastructural features of ER stress, swelling of mitochondria and elongation of cytoplasmic processes. Those changes partially reversed with prolonged incubation while features of autophagy were induced. PPT in equivalent concentrations induced HaCaT cell death by cell cycle arrest, intrinsic apoptosis and finally disintegration of cell membranes followed by secondary necrosis. In conclusion, we show that the KL3 derivative of PPT in contrast to PPT allows repair of normal keratinocytes and triggers mechanisms that restore non-tumor cell homeostasis.


Assuntos
Antineoplásicos/farmacologia , Benzotiazóis/farmacologia , Podofilotoxina/análogos & derivados , Podofilotoxina/farmacologia , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Caspase 9/metabolismo , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células HaCaT , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Microscopia Eletrônica de Transmissão
9.
Cancers (Basel) ; 12(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32883000

RESUMO

Entosis is a phenomenon, in which one cell enters a second one. New clinico-histopathological studies of entosis prompted us to summarize its significance in cancer. It appears that entosis might be a novel, independent prognostic predictor factor in cancer histopathology. We briefly discuss the biological basis of entosis, followed by a summary of published clinico-histopathological studies on entosis significance in cancer prognosis. The correlation of entosis with cancer prognosis in head and neck squamous cell carcinoma, anal carcinoma, lung adenocarcinoma, pancreatic ductal carcinoma and breast ductal carcinoma, is shown. Numerous entotic figures are associated with a more malignant cancer phenotype and poor prognosis in many cancers. We also showed that some anticancer drugs could induce entosis in cell culture, even as an escape mechanism. Thus, entosis is likely beneficial for survival of malignant cells, i.e., an entotic cell can hide from unfavourable factors in another cell and subsequently leave the host cell remaining intact, leading to failure in therapy or cancer recurrence. Finally, we highlight the potential relationship of cell adhesion with entosis in vitro, based on the model of the BxPc3 cells cultured in full adhesive conditions, comparing them to a commonly used MCF7 semiadhesive model of entosis.

10.
Folia Histochem Cytobiol ; 56(4): 185-194, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30294774

RESUMO

INTRODUCTION: The main component of extralysosomal proteolysis is the ubiquitin-proteasome system (UPS), which is supplemented by tripeptidyl peptidase II (TPPII). That system is a target for anticancer strategies by using proteasome inhibitors. Data from several studies on leukemic cells share evidence for the beneficial and potential role of TPPII in cell survivability. Therefore, the aim of this work was to analyze the effect of AAF-cmk, a membrane permeable semi-specific TPPII inhibitor, on human monocytic leukemic cells U937 for translational research. MATERIAL AND METHODS: We studied the viability of U937 cells incubated with AAF-cmk using tetrazolium salt reduction assay (MTT) and apoptosis induction by assessing caspase activation by Western blotting and Annexin V binding assays. Transmission electron microscopy (TEM), a gold standard for apoptosis and autophagy detection, was used to assess the ultrastructure of U937 cells. RESULTS: Incubation of cells with AAF-cmk reduced their viability and induced apoptosis by intrinsic pathway. In groups treated with AAF-cmk, activation of caspases 9 and 3 was observed and caspase inhibition by zVDA restored cell viability. TEM revealed the presence of ultrastructural features of apoptosis and authophagy. Moreover, we identified two types of protein aggregates. The first one was found in close proximity to the endoplasmic reticulum (ER) and corresponds to Aggresome-Like Structure (ALIS); however, the second novel type of aggregate was not related to ER elements, but rather to free cytosolic ribosomes. This type did not correspond to the aggresome neither in localization nor the structure, thus we referred these aggregates as ALiSNER (Aggresome-Like Structure Not Associated With the ER). CONCLUSIONS: Our results provide novel and important findings about the role of TPPII in protein homeostasis and cell survival. Since semispecific TPPII inhibitor AAF-cmk displays cytotoxic activity against leukemic U937 cells in vitro it can be considered as a potential anticancer agent.


Assuntos
Clorometilcetonas de Aminoácidos/farmacologia , Aminopeptidases/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Citotoxinas/farmacologia , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Agregados Proteicos/efeitos dos fármacos , Aminopeptidases/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Humanos , Serina Endopeptidases/metabolismo , Células U937
11.
Monatsh Chem ; 146(1): 89-98, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26166896

RESUMO

ABSTRACT: A new series of hydroxycoumarin derivatives has been synthesized using conventional synthesis. The syntheses were accelerated by microwave assistance. Yields in both cases were comparable (59-69 %). The structures were established by 1H and 13C NMR spectroscopy and high-resolution mass spectrometry. Five compounds (5-hydroxy-4,7-dimethylcoumarin, 6-acetyl-5-hydroxy-4,7-dimethylcoumarin, 4-(cyanomethoxy)chromen-2-one, 5-(cyanomethoxy)-4,7-dimethylchromen-2-one, and 6-acetyl-5-(cyanomethoxy)-4,7-dimethylchromen-2-one) were assayed for anti-cancer activity. For all presented coumarin derivatives, lipophilicity was measured using reversed-phase TLC in different eluent systems with standardization. In addition, the crystal structure of 6-acetyl-5-hydroxy-4,7-dimethylcoumarin has been solved by X-ray structure analysis of single crystals.

12.
Pharmacol Rep ; 67(2): 236-44, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25712645

RESUMO

BACKGROUND: The search for anti-cancer agents includes naturally occurring substances and theirs modifications. Therefore we invented and designed compounds that represent fused derivatives of gallic acid with coumarins. METHODS: As a result, a series of 8 novel esters of gallic acid and 7-hydroxycoumarins were synthesized and evaluated for anticancer activity. The structures of the compounds were established by IR, (1)H, (13)C NMR and HR MS spectra. The esters were assayed for antiproliferative activity against human leukemia HL-60 and prostate cancer DU145 cell lines. The activity of novel esters was evaluated by cell viability assays as well as by analysis of cell cycle and cell death mechanism. RESULTS: The esters were found to be of similar or higher activity than gallic acid. No pronounced harmful effect was observed in non-cancer cells. CONCLUSIONS: The novel compounds represent an excellent starting point for the further optimization and the design of therapeutically effective anti-cancerous drugs.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Ácido Gálico/análogos & derivados , Umbeliferonas/síntese química , Umbeliferonas/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ácido Gálico/farmacologia , Humanos , Relação Estrutura-Atividade , Umbeliferonas/química
13.
J Inorg Biochem ; 145: 94-100, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25660488

RESUMO

The new Cu(II) complexes with 6-acetyl-7-hydroxy-4-methylcoumarin (HL1) and 8-acetyl-7-hydroxy-4-methylcoumarin (HL2) have been obtained by the electrochemical method. The density functional theory calculations and X-ray absorption spectroscopy techniques have been used to geometrically describe a series of new compounds. The studies have been focused on the coordination mode of the hydroxy ligands to the metallic centre. The complexes, Cu(HL1)2 and Cu(HL2)2⋅0.5H2O, have flat square geometry with oxygen atoms in the first coordination sphere. Two bidentate anionic coumarins are bonded to the metal cation via the acetyl and deprotonated hydroxyl O atoms. Biological activity, including microbiological and cytotoxic, has been evaluated and found to be enhanced in comparison with the parent ligands. Moreover, the Cu(II) complex with 8-acetyl-7-hydroxy-4-methylcoumarin shows similar antifungal activity as commercially used fluconazole.


Assuntos
Cobre/química , Himecromona/química , Himecromona/farmacologia , Células 3T3 , Animais , Anti-Infecciosos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Himecromona/síntese química , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia por Absorção de Raios X
14.
Transl Oncol ; 7(5): 570-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25389452

RESUMO

Inhibition of the proteasome offers many therapeutic possibilities in inflammation as well as in neoplastic diseases. However, clinical use of proteasome inhibitors is limited by the development of resistance or severe side effects. In our study we characterized the anti-tumor properties of the novel proteasome inhibitor BSc2118. The sensitivity of tumor lines to BSc2118 was analyzed in comparison to bortezomib using crystal violet staining in order to assess cell viability. The In Vivo distribution of BSc2118 in mouse tissues was tracked by a fluorescent-modified form of BSc2118 (BSc2118-FL) and visualized by confocal microscopy. Inhibition of the 20S proteasome was monitored both in cultured cell lines and in mice, respectively. Finally, safety and efficacy of BSc2118 was evaluated in a mouse melanoma model. BSc2118 inhibits proliferation of different tumor cell lines with a similar potency as compared with bortezomib. Systemic administration of BSc2118 in mice is well tolerated, even when given in a dose of 60 mg/kg body weight. After systemic injection of BSc2118 or bortezomib similar proteasome inhibition patterns are observed within the murine organs. Detection of BSc2118-FL revealed correlation of distribution pattern of BSc2118 with inhibition of proteasomal activity in cells or mouse tissues. Finally, administration of BSc2118 in a mouse melanoma model shows significant local anti-tumor effects. Concluding, BSc2118 represents a novel low-toxic agent that might be alternatively used for known proteasome inhibitors in anti-cancer treatment.

15.
Bioorg Med Chem ; 22(5): 1773-81, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24507826

RESUMO

The utility of a novel, chemoenzymatic procedure for the stereocontrolled synthesis of small peptides is presented in the preparation and structure optimisation of dipeptides with cytostatic/cytotoxic activity. The method uses Passerini multicomponent reaction for the preparation of racemic scaffold which is then enantioselectively hydrolysed by hydrolytic enzymes. Products of these transformations are further functionalised towards title compounds. Both activity and selectivity towards tumor cells is optimised. Final compound is shown to be an inhibitor of the protein kinase signaling pathway.


Assuntos
Citostáticos/farmacologia , Dipeptídeos/síntese química , Peptidomiméticos/síntese química , Inibidores de Proteínas Quinases/farmacologia , Humanos , Estrutura Molecular
16.
Brain ; 135(Pt 11): 3282-97, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23169919

RESUMO

Only a minority of stroke patients receive thrombolytic therapy. Therefore, new therapeutic strategies focusing on neuroprotection are under review, among which, inhibition of the proteasome is attractive, as it affects multiple cellular pathways. As proteasome inhibitors like bortezomib have severe side effects, we applied the novel proteasome inhibitor BSc2118, which is putatively better tolerated, and analysed its therapeutic potential in a mouse model of cerebral ischaemia. Stroke was induced in male C57BL/6 mice using the intraluminal middle cerebral artery occlusion model. BSc2118 was intrastriatally injected 12 h post-stroke in mice that had received normal saline or recombinant tissue-plasminogen activator injections during early reperfusion. Brain injury, behavioural tests, western blotting, MMP9 zymography and analysis of angioneurogenesis were performed for up to 3 months post-stroke. Single injections of BSc2118 induced long-term neuroprotection, reduced functional impairment, stabilized blood-brain barrier through decreased MMP9 activity and enhanced angioneurogenesis when given no later than 12 h post-stroke. On the contrary, recombinant tissue-plasminogen activator enhanced brain injury, which was reversed by BSc2118. Protein expression of the transcription factor HIF1A was significantly increased in saline-treated and recombinant tissue-plasminogen activator-treated mice after BSc2118 application. In contrast, knock-down of HIF1A using small interfering RNA constructs or application of the HIF1A inhibitor YC1 (now known as RNA-binding motif, single-stranded-interacting protein 1 (RBMS1)) reversed BSc2118-induced neuroprotection. Noteworthy, loss of neuroprotection after combined treatment with BSc2118 and YC1 in recombinant tissue-plasminogen activator-treated animals was in the same order as in saline-treated mice, i.e. reduction of recombinant tissue-plasminogen activator toxicity through BSc2118 did not solely depend on HIF1A. Thus, the proteasome inhibitor BSc2118 is a promising new candidate for stroke therapy, which may in addition alleviate recombinant tissue-plasminogen activator-induced brain toxicity.


Assuntos
Indutores da Angiogênese/farmacologia , Isquemia Encefálica/tratamento farmacológico , Butanos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fármacos Neuroprotetores/farmacologia , Oligopeptídeos/farmacologia , Inibidores de Proteassoma/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatologia , Butanos/administração & dosagem , Butanos/antagonistas & inibidores , Butanos/uso terapêutico , Butanos/toxicidade , Modelos Animais de Doenças , Interações Medicamentosas , Técnicas de Silenciamento de Genes , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microinjeções , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Oligopeptídeos/administração & dosagem , Oligopeptídeos/antagonistas & inibidores , Oligopeptídeos/uso terapêutico , Oligopeptídeos/toxicidade , Inibidores de Proteassoma/administração & dosagem , Inibidores de Proteassoma/uso terapêutico , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/efeitos adversos , Recuperação de Função Fisiológica/efeitos dos fármacos , Terapia Trombolítica , Ativador de Plasminogênio Tecidual/administração & dosagem , Ativador de Plasminogênio Tecidual/efeitos adversos , Ativador de Plasminogênio Tecidual/antagonistas & inibidores
17.
Cancer Res ; 69(10): 4235-43, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19435917

RESUMO

Photodynamic therapy (PDT) is an approved therapeutic procedure that exerts cytotoxic activity toward tumor cells by inducing production of reactive oxygen species such as singlet oxygen. PDT leads to oxidative damage of cellular macromolecules, including proteins that undergo multiple modifications such as fragmentation, cross-linking, and carbonylation that result in protein unfolding and aggregation. Because the major mechanism for elimination of carbonylated proteins is their degradation by proteasomes, we hypothesized that a combination of PDT with proteasome inhibitors might lead to accumulation of carbonylated proteins in endoplasmic reticulum (ER), aggravated ER stress, and potentiated cytotoxicity toward tumor cells. We observed that Photofrin-mediated PDT leads to robust carbonylation of cellular proteins and induction of unfolded protein response. Pretreatment of tumor cells with three different proteasome inhibitors, including bortezomib, MG132, and PSI, gave increased accumulation of carbonylated and ubiquitinated proteins in PDT-treated cells. Proteasome inhibitors effectively sensitized tumor cells of murine (EMT6 and C-26) as well as human (HeLa) origin to PDT-mediated cytotoxicity. Significant retardation of tumor growth with 60% to 100% complete responses was observed in vivo in two different murine tumor models (EMT6 and C-26) when PDT was combined with either bortezomib or PSI. Altogether, these observations indicate that combination of PDT with proteasome inhibitors leads to potentiated antitumor effects. The results of these studies are of immediate clinical application because bortezomib is a clinically approved drug that undergoes extensive clinical evaluations for the treatment of solid tumors.


Assuntos
Éter de Diematoporfirina/uso terapêutico , Retículo Endoplasmático/fisiologia , Fotoquimioterapia/métodos , Inibidores de Proteassoma , Desnaturação Proteica/efeitos dos fármacos , Adenocarcinoma , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Neoplasias do Colo , Células HeLa/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Porfirinas/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Oxigênio Singlete/metabolismo , Ubiquitina/efeitos dos fármacos , Ubiquitina/metabolismo , Verteporfina
18.
Acta Biochim Pol ; 55(1): 75-84, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18327303

RESUMO

Thiazolidinediones are oral antidiabetic agents that activate peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and exert potent antioxidant and anti-inflammatory properties. It has also been shown that PPAR-gamma agonists induce G0/G1 arrest and apoptosis of malignant cells. Some of these effects have been suggested to result from inhibition of proteasome activity in target cells. The aim of our studies was to critically evaluate the cytostatic/cytotoxic effects of one of thiazolidinediones (pioglitazone) and its influence on proteasome activity. Pioglitazone exerted dose-dependent cytostatic/cytotoxic effects in MIA PaCa-2 cells. Incubation of tumor cells with pioglitazone resulted in increased levels of p53 and p27 and decreased levels of cyclin D1. Accumulation of polyubiquitinated proteins within cells incubated with pioglitazone suggested dysfunction of proteasome activity. However, we did not observe any influence of pioglitazone on the activity of isolated proteasome and on the proteolytic activity in lysates of pioglitazone-treated MIA PaCa-2 cells. Further, treatment with pioglitazone did not cause an accumulation of fluorescent proteasome substrates in transfected HeLa cells expressing unstable GFP variants. Our results indicate that pioglitazone does not act as a direct or indirect proteasome inhibitor.


Assuntos
Neoplasias/tratamento farmacológico , PPAR gama/metabolismo , Inibidores de Proteassoma , Tiazolidinedionas/farmacologia , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/biossíntese , Citostáticos/farmacologia , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Hipoglicemiantes/farmacologia , Neoplasias/metabolismo , Pioglitazona , Inibidores de Proteases/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Supressora de Tumor p53/biossíntese
19.
Cancer Res ; 66(15): 7598-605, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16885359

RESUMO

Resistance of tumor cells to cisplatin is a common feature frequently encountered during chemotherapy against melanoma caused by various known and unknown mechanisms. To overcome drug resistance toward cisplatin, a targeted treatment using alternative agents, such as proteasome inhibitors, has been investigated. This combination could offer a new therapeutic approach. Here, we report the biological effects of proteasome inhibitors on the parental cisplatin-sensitive MeWo human melanoma cell line and its cisplatin-resistant MeWo(cis1) variant. Our experiments show that proteasome inhibitor treatment of both cell lines impairs cell viability at concentrations that are not toxic to primary human fibroblasts in vitro. However, compared with the parental MeWo cell line, significantly higher concentrations of proteasome inhibitor are required to reduce cell viability of MeWo(cis1) cells. Moreover, whereas proteasome activity was inhibited to the same extent in both cell lines, IkappaBalpha degradation and nuclear factor-kappaB (NF-kappaB) activation in MeWo(cis1) cells was proteasome inhibitor independent but essentially calpain inhibitor sensitive. In support, a calpain-specific inhibitor impaired NF-kappaB activation in MeWo(cis1) cells. Here, we show that cisplatin resistance in MeWo(cis1) is accompanied by a change in the NF-kappaB activation pathway in favor of calpain-mediated IkappaBalpha degradation. Furthermore, combined exposure to proteasome and calpain inhibitor resulted in additive effects and a strongly reduced cell viability of MeWo(cis1) cells. Thus, combined strategies targeting distinct proteolytic pathways may help to overcome mechanisms of drug resistance in tumor cells.


Assuntos
Butanos/farmacologia , Calpaína/antagonistas & inibidores , Cisplatino/farmacologia , Melanoma/tratamento farmacológico , Melanoma/enzimologia , Oligopeptídeos/farmacologia , Inibidores de Proteases/farmacologia , Inibidores de Proteassoma , Acrilatos/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores de Cisteína Proteinase/farmacologia , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Humanos , Proteínas I-kappa B/metabolismo , Melanoma/patologia , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA