Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Foods ; 13(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38254501

RESUMO

Food is generally prepared and vacuum-sealed in a water bath, then heated to a precise temperature and circulated in a sous vide machine. Due to its affordability and ease of use, this cooking method is becoming increasingly popular in homes and food service businesses. However, suggestions from manufacturers and chefs for long-term, low-temperature sous vide cooking raise questions about food safety in the media. In this study, heat treatment with different times and wild thyme essential oil (EO) in sous vide-processed rabbit longissimus dorsi muscle were found to inactivate Salmonella enterica. The rabbit meat samples were vacuum-packed in control groups, in the second group the rabbit meat samples were injected with S. enterica, and in the third group were meat samples infected with S. enterica with Thymus serpylum EO additive. The vacuum-packed samples were cooked sous vide for the prescribed time at 55, 60, and 65 °C. At 5, 15, 30, and 60 min, the quantities of S. enterica, total bacterial counts, and coliform bacteria were measured in groups of sous vide rabbit meat. Microbiological analyses of rabbit meat samples on days 1 and 7 were evaluated. In this study, total viable counts, coliforms bacteria, and number of Salmonella spp. were identified. After incubation, isolates from different groups of microorganisms were identified by the mass spectrometry technique. For each day measured, the test group exposed to a temperature of 55 °C for 5 min had a greater number of total microbiota. The most isolated microorganisms by MALDI-TOF MS Biotyper from the control and treated groups were Lactococcus garvieae and in the treated groups also S. enterica. Based on our analysis of sous vide rabbit meat samples, we discovered that adding 1% of thyme essential oil to the mixture reduced the amount of Salmonella cells and increased the overall and coliform bacterial counts. The microbiological quality of sous vide rabbit meat that was kept for seven days was positively impacted by the addition of thyme essential oil.

2.
Food Sci Nutr ; 12(1): 574-589, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38268912

RESUMO

α-Pinene, α-terpineol, and 1,8-cineole are compounds naturally present in essential oils, although their amounts vary from oil to oil. Although several studies have reported their antibacterial and antioxidant effects, there are few reports on the synergistic or antagonistic effects of their combinations. The objective of this study was to investigate the combined antibacterial effect of these three compounds. To our knowledge, this is the first report on the prediction of their optimal combination using the mixture design approach. The experimental antibacterial activity of the α-pinene, α-terpineol, and 1,8-cineole mixtures depended on the proportion of each compound in the mixture and the target strain, with minimum inhibitory concentrations (MIC) ranging from 0.31 to 1.85 mg/mL. Using the increased simplex-centroid mixture design, the mixture containing 0.33% of each molecule proved to be the most effective against Bacillus cereus and had the lowest MIC values. In addition, α-pinene, α-terpineol, and 1,8-cineole showed significant antioxidant activity against 2,2-picryl-1-hydrazyl radical (DPPH), with IC50 values of 24.53 ± 0.05, 65.63 ± 0.71, and 63.58 ± 0.01 µg/mL, respectively. Statistical planning and the development of utility profiles of the substance mixtures can predict the optimal composition that will exhibit the highest antibacterial activity against B. cereus as well as antioxidant properties. Furthermore, the synergistic effect of the mixtures can contribute significantly to their successful use as natural preservatives in various applications.

3.
Foods ; 12(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37107442

RESUMO

Meat and meat products are susceptible to various types of natural processes such as oxidative degradation due to their high content of protein and essential amino acids. However, finding solutions to maintain the nutritional and sensory quality of meat and meat products is unavoidable. Hence, there is a pressing need to investigate alternatives to synthetic preservatives, focusing on active biomolecules of natural provenance. Polysaccharides are natural polymers of various sources that exhibit antibacterial and antioxidant properties via a variety of mechanisms, owing to their diversity and structural variation. For this reason, these biomolecules are widely studied in order to improve texture, inhibit the growth of pathogens, and improve the oxidative stability and sensory characteristics of meat products. However, the literature has not addressed their biological activity in meat and meat products. This review summarizes the various sources of polysaccharides, their antioxidant and antibacterial activities (mainly against pathogenic food strains), and their use as natural preservatives to replace synthetic additives in meat and meat products. Special attention is given to the use of polysaccharides to improve the nutritional value of meat, resulting in more nutrient-rich meat products with higher polysaccharide content and less salt, nitrites/nitrates, and cholesterol.

4.
Diagnostics (Basel) ; 13(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36900123

RESUMO

Circulating fatty acids (FA) have an endogenous or exogenous origin and are metabolized under the effect of many enzymes. They play crucial roles in many mechanisms: cell signaling, modulation of gene expression, etc., which leads to the hypothesis that their perturbation could be the cause of disease development. FA in erythrocytes and plasma rather than dietary FA could be used as a biomarker for many diseases. Cardiovascular disease was associated with elevated trans FA and decreased DHA and EPA. Increased arachidonic acid and decreased Docosahexaenoic Acids (DHA) were associated with Alzheimer's disease. Low Arachidonic acid and DHA are associated with neonatal morbidities and mortality. Decreased saturated fatty acids (SFA), increased monounsaturated FA (MUFA) and polyunsaturated FA (PUFA) (C18:2 n-6 and C20:3 n-6) are associated with cancer. Additionally, genetic polymorphisms in genes coding for enzymes implicated in FA metabolism are associated with disease development. FA desaturase (FADS1 and FADS2) polymorphisms are associated with Alzheimer's disease, Acute Coronary Syndrome, Autism spectrum disorder and obesity. Polymorphisms in FA elongase (ELOVL2) are associated with Alzheimer's disease, Autism spectrum disorder and obesity. FA-binding protein polymorphism is associated with dyslipidemia, type 2 diabetes, metabolic syndrome, obesity, hypertension, non-alcoholic fatty liver disease, peripheral atherosclerosis combined with type 2 diabetes and polycystic ovary syndrome. Acetyl-coenzyme A carboxylase polymorphisms are associated with diabetes, obesity and diabetic nephropathy. FA profile and genetic variants of proteins implicated in FA metabolism could be considered as disease biomarkers and may help with the prevention and management of diseases.

5.
Foods ; 12(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36981228

RESUMO

The goal of this work was to investigate the impact of the flavoring of some aromatic plants/spices, including rosemary (R), lemon (L) and orange (O) at the concentration of 5% and 35% (w/w) added by 2 methods (conventional maceration and direct flavoring), on quality attributes, chemical changes and oxidative stability of extra virgin olive oil (EVOO). Six flavored oils were obtained (EVOO + O, O + O, EVOO + R, O + R, EVOO + L and O + L). The physicochemical parameters (water content, refractive index, acidity and peroxide value, extinction coefficient, fatty acids, volatile aroma profiles, Rancimat test, phenols and pigments composition) of the flavored oils were investigated. Based on the results obtained, it was observed that flavoring with a conventional process provided increased oxidative stability to the flavored oils, especially with rosemary (19.38 ± 0.26 h), compared to that of unflavored oil. The volatile profiles of the different flavored oils revealed the presence of 34 compounds with the dominance of Limonene. The fatty acid composition showed an abundance of mono-unsaturated fatty acids followed by poly-unsaturated ones. Moreover, a high antioxidant activity, a significant peripheral analgesic effect (77.7% of writhing inhibition) and an interesting gastroprotective action (96.59% of ulcer inhibition) have been observed for the rosemary-flavored oil. Indeed, the flavored olive oils of this study could be used as new functional foods, leading to new customers and further markets.

6.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769352

RESUMO

Cold stress is a key environmental factor affecting plant growth and development, crop productivity, and geographic distribution. Thioredoxins (Trxs) are small proteins that are ubiquitously expressed in all organisms and implicated in several cellular processes, including redox reactions. However, their role in the regulation of cold stress in the halophyte plant Lobularia maritima remains unknown. We recently showed that overexpression of LmTrxh2, which is the gene that encodes the h-type Trx protein previously isolated from L. maritima, led to an enhanced tolerance to salt and osmotic stress in transgenic tobacco. This study functionally characterized the LmTrxh2 gene via its overexpression in tobacco and explored its cold tolerance mechanisms. Results of the RT-qPCR and western blot analyses indicated differential temporal and spatial regulation of LmTrxh2 in L. maritima under cold stress at 4 °C. LmTrxh2 overexpression enhanced the cold tolerance of transgenic tobacco, as evidenced by increased germination rate, fresh weight and catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD) activities; reduced malondialdehyde levels, membrane leakage, superoxide anion (O2-), and hydrogen peroxide (H2O2) levels; and higher retention of chlorophyll than in non-transgenic plants (NT). Furthermore, the transcript levels of reactive oxygen species (ROS)-related genes (NtSOD and NtCAT1), stress-responsive late embryogenis abundant protein 5 (NtLEA5), early response to dehydration 10C (NtERD10C), DRE-binding proteins 1A (NtDREB1A), and cold-responsive (COR) genes (NtCOR15A, NtCOR47, and NtKIN1) were upregulated in transgenic lines compared with those in NT plants under cold stress, indicating that LmTrxh2 conferred cold stress tolerance by enhancing the ROS scavenging ability of plants, thus enabling them to maintain membrane integrity. These results suggest that LmTrxh2 promotes cold tolerance in tobacco and provide new insight into the improvement of cold-stress resistance to cold stress in non-halophyte plants and crops.


Assuntos
Brassicaceae , Nicotiana , Antioxidantes/metabolismo , Brassicaceae/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plantas Tolerantes a Sal/genética , Estresse Fisiológico/genética , Nicotiana/metabolismo , Temperatura Baixa
7.
Life (Basel) ; 12(10)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36295006

RESUMO

This study was directed towards the investigation of the chemical composition and antimicrobial properties of the essential oil of Tunisian halophyte Lobularia maritime (LmEO). The antibacterial effects against major food-borne pathogenic and food spoilage bacteria were tested using the well diffusion method, followed by the determination of the minimum inhibitory (MIC) and bactericidal (MBC) concentrations. The essential oil has shown strong antimicrobial activity against eight pathogenic strains, which was attributed mostly to predominant constituents of the essential oil: benzyl alcohol, linalool, terpien-4-ol and globulol, as well as to synergistic effects of its major and minor constituents. Considering strong antimicrobial effects of the tested essential oil, it was further tested as a natural alternative to food preservatives, using minced beef meat as a model system. Minced beef meat was spiked with 0.019, 0.038, and 0.076% of the essential oil and stored during 14 days at 4 °C, monitoring its microbiological, physicochemical, and sensory properties. Chemical analyses revealed that meat treated with 0.076% of LmEO at underwent a significant decrease (p < 0.05) in primary and secondary lipid oxidation and reduced metmyoglobin accumulation compared with control samples. Furthermore, microflora proliferation in the meat model system spiked with 0.076% of LmEO was significantly (p < 0.05) reduced in comparison to control. In addition, two multivariate exploratory techniques, namely principal component analysis (PCA) and hierarchical analysis (HCA), were applied to the obtained data sets to describe the relationship between the main characteristics of the meat samples with and without essential oil addition. The chemometric approach highlighted the relationships between meat quality parameters. Overall, results indicated that the essential oil of Lobularia maritima deserves to be considered as a natural preservative in the meat industry.

8.
Animals (Basel) ; 12(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36139173

RESUMO

The present study aimed to evaluate deer meat microbiological quality when treated with essential oil (EO) from Litsea cubeba (dissolved in rapeseed oil at concentrations 0.5 and 1%), in combination with vacuum packaging during 20 days of storage of meat at 4 °C. Total viable counts (TVC), coliforms bacteria (CB), lactic acid bacteria (LAB) and Pseudomonas spp. were analysed at day 0, 1, 5, 10, 15 and 20. MALDI-TOF MS Biotyper technology was applied to identify microorganisms isolated from meat. The highest number of TVC at the end of the experiment was 5.50 log CFU/g in the aerobically packaged control group and the lowest number of TVC was 5.17 log CFU/g in the samples treated with 1.0% Litsea cubeba EO. CB were not detected in the samples treated with 1.0% Litsea cubeba EO during the entire storage period. Bacteria of the genus Pseudomonas were detected only in the aerobically and vacuum packaged control group. The highest number of LAB was 2.06 log CFU/g in the aerobic control group, and the lowest number of LAB was 2.01 log CFU/g in the samples treated with 1.0% Litsea cubeba EO on day 20. The most frequently isolated bacteria from deer meat were Pseudomonas ludensis, Pseudomonas corrugata, Pseudomonas fragi, Bacillus cereus, Staphylococcus epidermidis and Sphingomonas leidyi.

9.
Food Sci Nutr ; 10(7): 2271-2284, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35844920

RESUMO

The aim of the present study was to investigate the extraction and the characterization of a novel heteropolysaccharide from Tunisian halophyte Lobularia maritima (LmPS). We were also interested in its antioxidant, anti-inflammatory, and hepatoprotective effects on carbon tetrachloride (CCl4)-induced liver injury in rats. LmPS physicochemical properties were evaluated by thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), thermogravimetric analysis (TGA), and UV absorption. According to TLC and HPLC results, LmPS was a heteropolysaccharide composed of glucose, galactose, and xylose. Its molecular weight was 130.62 kDa. This heteropolysaccharide was characterized by a significant antioxidant potential and was efficient against oxidative stress and CCL4-induced hepatotoxicity in rat Wistar models (n = 8) treated with a single dose of LmPS 250 mg/kg of body weight. This was evidenced by a significant increase in serum marker enzymes specially aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH). The cytokines released after stimulation of rats with LmPS showed high anti-inflammatory profiles with an increased rate of interleukine-10 (IL-10) with 0.03 pg/mL compared to animals treated only with CCl4. On the contrary, we noticed a decrease of the other cytokines (tumor necrosis factor α: TNF-α, interleukine-6: IL-6, transforming growth factor beta 1: TGF-ß1) with average concentration values of <0.2, 0.1, and 0.04 pg/mL, respectively. Besides, histopathological examinations revealed that CCl4 causes acute liver damage, characterized by extensive hepatocellular necrosis, vacuolization, and inflammatory cell infiltration, as well as DNA fragmentation. LmPS administration at a dose of 250 mg/kg resulted in a significant hepatoprotection, evidenced by a reduction of CCl4-induced oxidative damage for all tested markers. These findings eagerly confirmed that LmPS was effective in the protection against CCl4-induced hepatotoxicity and genotoxicity. It, therefore, suggested a potential therapeutic use of this polysaccharide as an alternative medicine for patients with acute liver diseases.

10.
Food Sci Nutr ; 10(3): 863-878, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35311176

RESUMO

This study established physicochemical and sensory characteristics of virgin olive oils (VOOs) and linked them to consumers' liking using external preference mapping. We used five Tunisian and two foreign VOO varieties produced by two processing systems: discontinuous (sp) and continuous three-phase decanter (3p). The samples were analyzed and evaluated by a panel of 274 consumers. The external preference mapping revealed five VOO clusters with a consumer preference scores rating from 40% to 65%. Consumers highly appreciated the foreign Coratina cultivar's olive oil; the main drivers being richness in polyphenols (markers of bitterness and pungency), mainly the oleuropein aglycone, and volatile compounds (markers of green fruity, green leaves, green apple, cut grassy almond, and bitterness), particularly the trans-2-hexenol. The Tunisian Chemlali (3p) oil was second highly preferred (scoring 55%). The positive drivers for olive oil preference (a profile of almond fruity green and low bitterness and pungency) are the richness in hexanal compounds. Arbequina (sp and 3p) and Chemlali (sp) were the least appreciated due to the fact that Arbequina VOO is not in the tradition of Tunisian consumers, whereas Chemchali VOO is a minor variety representing only 2% of olive oil production in Tunisia and consumed mostly in blends. The differentiation between the two processing systems depends on the variety of cultivar; consumers are able to identify the two processing system in the case of Chetoui, Leguim, and Chemchali.

11.
Sci Rep ; 12(1): 3234, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217717

RESUMO

Leukemic cells proliferate faster than non-transformed counterparts. This requires them to change their metabolism to adapt to their high growth. This change can stress cells and facilitate recognition by immune cells such as cytotoxic lymphocytes, which express the activating receptor Natural Killer G2-D (NKG2D). The tumor suppressor gene p53 regulates cell metabolism, but its role in the expression of metabolism-induced ligands, and subsequent recognition by cytotoxic lymphocytes, is unknown. We show here that dichloroacetate (DCA), which induces oxidative phosphorylation (OXPHOS) in tumor cells, induces the expression of such ligands, e.g. MICA/B, ULBP1 and ICAM-I, by a wtp53-dependent mechanism. Mutant or null p53 have the opposite effect. Conversely, DCA sensitizes only wtp53-expressing cells to cytotoxic lymphocytes, i.e. cytotoxic T lymphocytes and NK cells. In xenograft in vivo models, DCA slows down the growth of tumors with low proliferation. Treatment with DCA, monoclonal antibodies and NK cells also decreased tumors with high proliferation. Treatment of patients with DCA, or a biosimilar drug, could be a clinical option to increase the effectiveness of CAR T cell or allogeneic NK cell therapies.


Assuntos
Antineoplásicos , Leucemia , Proteína Supressora de Tumor p53 , Antineoplásicos/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Leucemia/imunologia , Leucemia/metabolismo , Ligantes , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteína Supressora de Tumor p53/imunologia , Proteína Supressora de Tumor p53/metabolismo
12.
Drug Chem Toxicol ; 45(2): 604-616, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32228118

RESUMO

Lobularia maritima (Alyssum maritimum, Brassicaceae), commonly known as sweet alyssum, is an annual ornamental halophyte widely spread along the Tunisian seashore. Lobularia maritima leaf ethanol extract was tested in an experimental model of hepatotoxicity induced by carbon tetrachloride (CCl4). L. maritima extract was found to possess in vitro antioxidant activity by scavenging the DPPH radical (IC50= 45 µg/mL), reducing/chelating iron ions and inhibiting liver lipid peroxidation induced by FeSO4. The levels of total phenolics and flavonoids were 175 ± 2.66 mg GAE/g, and 35 ± 2.88 mg QE/g respectively. Moreover, HPLC analysis revealed six compounds, namely gallic, salicylic, ellagic and ferulic acids as well as catechin and quercetin. A mice model of acute liver injury was successfully established after a single intraperitoneal injection of CCl4, as evidenced by histological analysis, Masson trichrome and Sirius red staining. Compared with the CCl4 intoxicated group, the L. maritima treatment resulted to reduce the liver serum marker enzymes, lipid peroxidation and increased the activities of antioxidant enzymes with further amelioration in the oxidative stress. The present findings discover the therapeutic potentials of L. maritima empowered with promising natural leads for the treatment of oxidative stress associated health disorders by attenuating free radicals, inhibiting lipid peroxidation, and upregulating the tissue-specific antioxidant enzymes.


Assuntos
Brassicaceae , Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Animais , Antioxidantes/farmacologia , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Suplementos Nutricionais , Peroxidação de Lipídeos , Fígado , Camundongos , Estresse Oxidativo , Extratos Vegetais/química
13.
Diagnostics (Basel) ; 11(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946812

RESUMO

Monitoring graft recipients remains dependent on traditional biomarkers and old technologies lacking specificity, sensitivity, or accuracy. Recently, metabolomics is becoming a promising approach that may offer to kidney transplants a more effective and specific monitoring. Furthermore, emerging evidence suggested a fundamental role of gut microbiota as an important determinant of patients' metabolomes. In the current study, we enrolled forty stable renal allografts recipients compared to twenty healthy individuals. Samples were taken at different time points from patient to patient following transplantation surgery, which varied from 3 months to 22 years post-graft. All patients started the immunosuppression therapy immediately following kidney graft (Day 0). Gas chromatography-mass spectrometry (GC-MS) was employed to perform untargeted analysis of fecal metabolites. Globally, the fecal metabolic signature was significantly different between kidney transplants and the control group. Fecal metabolome was dominated by lipids (sterols and fatty acids) in the stable transplant group compared to the controls (p < 0.05). Overall, 18 metabolites were significantly altered within kidney transplant recipients. Furthermore, the most notable altered metabolic pathways in kidney transplants include ubiquinone and other terpenoid-quinone biosynthesis, tyrosine metabolism, tryptophan biosynthesis, and primary bile acid biosynthesis. Fecal metabolites could effectively distinguish stable transplant recipients from controls, supporting the potential utility of metabolomics in rapid and non-invasive diagnosis to produce relevant biomarkers and to help clinicians in monitoring kidney transplants. Further investigations are needed to clarify the physiological relevance of fecal metabolome and to assess the impact of microbiota modulation.

14.
Microb Pathog ; 154: 104869, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33774106

RESUMO

Lipid transfer proteins (LTP) are members of the family of pathogenesis-related proteins (PR-14) that play a key role in plant defense mechanisms. In this study, a novel gene TdLTP4 encoding an antifungal protein from wheat (cv. Om Rabiaa) was cloned, overexpressed in Escherichia coli BL-21 (DE3) and enriched using ammonium sulfate fractionation. The TdLTP4 fusion protein was then tested against a panel of pathogens, food-borne and spoilage bacteria and fungi in order to evaluate the antimicrobial properties. TdLTP4 was applied to 0.5 µg/mL LPS-induced RAW 264.7 macrophages in vitro at different concentrations (5, 10, 20, 50 and 100 µg/mL). Levels of nitric oxide (NO), pro-inflammatory cytokines interleukin (IL)-1ß (IL-1 ß), interleukin (IL)-6 (IL-6), tumor necrosis factor (TNF-α) and anti-inflammatory cytokine IL-10 in the supernatant fraction were measured using enzyme-linked immunosorbent assay (ELISA). Expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were detected via Western blot. The inhibition zones and minimal inhibitory concentration (MIC) values of bacterial strains were in the range of 14-26 mm and 62.5-250 µg/mL, respectively. Moreover, a remarkable activity against several fungal strains was revealed. TdLTP4 (5-100 µg/mL) decreased the production of NO (IC50 = 4.32 µg/mL), IL-6 (IC50 = 11.52 µg/mL), IL-1ß (IC50 = 7.87 µg/mL) and TNF-α (IC50 = 8.66 µg/mL) by lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. TdLTP4 could modulate the macrophages inflammatory mode by causing reduction in iNOS and COX-2. According to these findings, TdLTP4 fusion protein could be used as natural anti-inflammatory and antimicrobial agent in food preservation and human health.


Assuntos
Lipopolissacarídeos , Triticum , Animais , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7
15.
Food Sci Nutr ; 8(4): 2076-2087, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32328274

RESUMO

In this research, the chemical composition and biological properties of Tunisian Myrtus communis (McEO) flowers were investigated. The antibacterial effect of McEO toward some bacteria was assessed, alone and in combination with nisin. The major components of McEO were α-pinene, 1,8-cineol, limonene, and linalool. McEO exhibited cytotoxicity toward HepG2 and MCF-7 cell lines. The microbiological data showed that Gram-positive bacteria were more susceptible to McEO. McEO had a bactericidal effect against L. monocytogenes. McEO is able to prevent lipid oxidation, microbial development at noncytotoxic concentrations, when used alone or in combination with nisin. It can improve sensory attributes within acceptable limits and improve the conservation of shelf life of minced beef meat during the 4°C storage period. The most potent preservative effect was obtained with the mixture: 0.8% McEO with 500 IU/g of nisin. This combination may be a good alternative for the development of natural preservatives.

16.
Molecules ; 24(4)2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795596

RESUMO

This work reviews the new isolated cembranoid derivatives from species of the genera Sarcophyton, Sinularia, and Lobophytum as well as their biological properties, during 2016⁻2018. The compilation permitted to conclude that much more new cembranoid diterpenes were found in the soft corals of the genus Sarcophyton than in those belonging to the genera Lobophytum or Sinularia. Beyond the chemical composition, the biological properties were also reviewed, namely anti-microbial against several Gram-positive and Gram-negative bacteria and fungi, anti-inflammatory and anti-tumoral against several types of cancer cells. In spite of the biological activities detected in almost all samples, there is a remarkable diversity in the results which may be attributed to the chemical variability that needs to be deepened in order to develop new molecules with potential application in medicine.


Assuntos
Antozoários/química , Antibacterianos/química , Anti-Inflamatórios/química , Antifúngicos/química , Antineoplásicos/química , Diterpenos/química , Animais , Antozoários/metabolismo , Antibacterianos/classificação , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Anti-Inflamatórios/classificação , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antifúngicos/classificação , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Antineoplásicos/classificação , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/classificação , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
17.
Environ Toxicol ; 34(4): 388-400, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30578595

RESUMO

The present study aimed (1) to investigate the chemical composition as well as the anti-inflammatory properties and in vitro antioxidant activity of Citrus aurantium peel essential oil (pEOCa) and (2) to evaluate its potential effect in vivo. The main results showed that the major components of pEOCa are Limonene and Linalool. Additionally, DPPH scavenging ability and ß-carotene bleaching inhibition tests confirmed the antioxidant capacity of pEOCa. Our oil reduced the production of NO by LPS-stimulated RAW264,7 macrophages in a concentration-dependent. This inhibition occurred at a transcriptional level. pEOCa in CCl4 treated rats alleviated hepatotoxicity as monitored by the improvement of hepatic oxidative stress biomarkers levels plasma biochemical parameters, and DNA molecule aspect. Furthermore, the mRNA gene expression of Cu-Zn SOD, CAT, and GPx increased under CCl4 + pEOCa exposure to reach the same value to the control. Similarly, antioxidant activities of these three enzymes changed in accordance with the mRNA levels. These results were confirmed by the histological results. It seems obvious that the treatment with pEOCa prevented liver damage induced by CCl4 , thus preventing the harmful effects of free radicals.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Citrus/química , Óleos Voláteis/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Anti-Inflamatórios/isolamento & purificação , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Relação Dose-Resposta a Droga , Masculino , Camundongos , Óleos Voláteis/isolamento & purificação , Células RAW 264.7 , Ratos
18.
RSC Adv ; 9(7): 3777-3787, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35518089

RESUMO

Myrtus communis L. (Myrtle) is one of the most important aromatic and medicinal species from the Myrtaceae family. It is traditionally used as antiseptic, disinfectant drug and hypoglycemic agent. The aim of our study was to evaluate the protective effect of Myrtus communis essential oil (McEO) on CCl4-induced hepatotoxicity in rat. Thirty two adult Wistar rats were divided into 4 groups of 8 each: (1) a control group; (2) was given a single dose of CCl4 (1 mL kg-1 in 1% olive oil. ip) on the 14th day (3) were given during 15 days a daily i.p. injection of McEO at 250 mL kg-1 b.w (4) a group was pretreated with McEO and intoxicated with CCl4 on the 14th day. The major components of McEO are α-pinene (35.20%), 1,8-cineole (17%), linalool (6.17%) and limonene (8.94%) which accounted for 67.31% of the whole oil. The antioxidant activity of McEO was evaluated using DPPH scavenging ability, ß-carotene bleaching inhibition and hydroxyl radical-scavenging activity. Moreover, the effect of McEO (250 mg kg-1 body weight BW) administrated for 14 consecutive days was evaluated in wistar rat. Administration of a single dose of CCl4 caused hepatotoxicity as monitored by an increase in lipid peroxidation (thiobarbituric acid reactive substances) as well in protein carbonyl level but decreased in antioxidant markers in the liver tissue. The McEO pre-treatment significantly prevented the increased plasma levels of hepatic markers and lipid levels induced by CCl4 in rats. Furthermore, this fraction improved biochemical and histological parameters as compared to CCl4-treated group. Our results suggest that M. communis contains promising substances to counteract the CCl4 intoxication and which may be efficient in the prevention of hepatotoxicity complications.

19.
RSC Adv ; 9(63): 36758-36770, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-35539073

RESUMO

The present study evaluates the chemical profiling of the essential oil of a halophyte, L. maritima (LmEO), and its protective potential against CCl4-induced oxidative stress in rats. Forty compounds have been identified in LmEO. The major components are α-pinene (3.51%), benzyl alcohol (8.65%), linalool (22.43%), pulegone (3.33%), 1-phenyl butanone (7.33%), globulol (4.32%), γ-terpinene (6.15%), terpinen-4-ol (4.31%), α-terpineol (3.9%), ledol (3.59%), epi-α-cadinol (3.05%) and α-cadinol (4.91%). In comparison with the CCl4-intoxicated group, LmEO treatment resulted in decreased liver serum marker enzymes, decreased lipid peroxidation and increased antioxidant enzyme levels, with overall further amelioration of oxidative stress. The administration of LmEO to CCl4-treated rats at a dose of 250 mg kg-1 body weight significantly reduced the toxic effects and the oxidative stress on the liver, thus validating the traditional medicinal claim of this plant. Moreover, the anti-inflammatory activity of LmEO was evaluated in lipopolysaccharide-stimulated murine RAW 264.7 cells. Our oil could modulate the inflammatory mode of the macrophages by causing reduction in iNOS and COX2 enzymes as well as in IL-1ß, IL-6, and TNF-α cytokine levels. These findings suggest that LmEO exerts anti-inflammatory effects by regulating the expression of inflammatory cytokines.

20.
Pak J Pharm Sci ; 31(6): 2397-2402, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30473510

RESUMO

We study the composition of Tunisian laurel leaves essential oil (EO), the fatty acid composition of laurel seed fixed oil and the total phenolics, flavonoids and tannins of laurel leaves methanolic extract. We also evaluated its free radical scavenging activity by the DPPH test. The predominant chemical class in Tunisian Laurus nobilis leaves EO was represented by oxygenated monoterpenes accounting for 64.29% of whole EO with the major compound was 1,8-cineole (46.8%). The predominant fatty acid was oleic acid (C18: 1) with an amount of 42.0%. Total polyphenols were present in the methanolic extract of Laurusnobilis leaves at an amount of 174.1 mg GAE.g-1dry matter. Total flavonoids and total tannins accounted respectively for 149.2mg CE.g-1 dry matter and 24.9mg CEg-1 dry matter. Furthermore, concerning free radical scavenging activity, Laurus nobilis leaves methanolic extract presented a significant IC50 (3mg/mL).


Assuntos
Sequestradores de Radicais Livres/farmacologia , Laurus , Óleos Voláteis/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Óleos de Plantas/farmacologia , Compostos de Bifenilo/química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/isolamento & purificação , Laurus/química , Laurus/crescimento & desenvolvimento , Metanol/química , Óleos Voláteis/isolamento & purificação , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Picratos/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Sementes , Solventes/química , Tunísia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA