Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Reproduction ; 160(2): 293-305, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32585639

RESUMO

Protein disulfide isomerase 3 (PDIA3) is a chaperone protein that modulates the folding of newly synthesized glycoproteins, has isomerase and redox activity, and has been implicated in the pathogenesis of many diseases. However, the role of PDIA3 in pregnancy-associated diseases remains largely unknown. Our present study reveals a key role for PDIA3 in the biology of placental trophoblasts from women with preeclampsia (PE). Immunohistochemistry and Western blot analysis revealed that PDIA3 expression was decreased in villous trophoblasts from women with PE compared to normotensive pregnancies. Further, using a Cell Counting Kit-8 assay, flow cytometry, and 5-ethynyl-2'-deoxyuridine (EdU) staining, we found that siRNA-mediated PDIA3 knockdown significantly promoted apoptosis and inhibited proliferation in the HTR8/SVneo cell line, while overexpression of PDIA3 reversed these effects. Furthermore, RNA sequencing and Western blot analysis demonstrated that knockdown of PDIA3 inhibited MDM2 protein expression in HTR8 cells, concurrent with marked elevation of p53 and p21 expression. Conversely, overexpression of PDIA3 had the opposite effects. Immunohistochemistry and Western blot further revealed that MDM2 protein expression was downregulated and p21 was increased in trophoblasts of women with PE compared to women with normotensive pregnancies. Our findings indicate that PDIA3 expression is decreased in the trophoblasts of women with PE, and decreased PDIA3 induces trophoblast apoptosis and represses trophoblast proliferation through regulating the MDM2/p53/p21 pathway.


Assuntos
Apoptose , Proliferação de Células , Regulação da Expressão Gênica , Placenta/patologia , Pré-Eclâmpsia/patologia , Isomerases de Dissulfetos de Proteínas/metabolismo , Trofoblastos/patologia , Estudos de Casos e Controles , Feminino , Humanos , Placenta/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Gravidez , Isomerases de Dissulfetos de Proteínas/genética , Proteínas Proto-Oncogênicas c-mdm2 , Trofoblastos/metabolismo
2.
Cell Death Dis ; 9(9): 926, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206208

RESUMO

Trophoblast dysfunction is one mechanism implicated in the etiology of recurrent miscarriage (RM). Regulation of trophoblast function, however, is complex and the mechanisms contributing to dysregulation remain to be elucidated. Herein, we found EIF5A1 expression levels to be significantly decreased in cytotrophoblasts in RM villous tissues compared with healthy controls. Using the HTR-8/SVneo cell line as a model system, we found that overexpression of EIF5A1 promotes trophoblast proliferation, migration and invasion in vitro. Knockdown of EIF5A1 or inhibiting its hypusination with N1-guanyl-1,7-diaminoheptane (GC7) suppresses these activities. Similarly, mutating EIF5A1 to EIF5A1K50A to prevent hypusination abolishes its effects on proliferation, migration and invasion. Furthermore, upregulation of EIF5A1 increases the outgrowth of trophoblasts in a villous explant culture model, whereas knockdown has the opposite effect. Suppression of EIF5A1 hypusination also inhibits the outgrowth of trophoblasts in explants. Mechanistically, ARAF mediates the regulation of trophoblast migration and invasion by EIF5A1. Hypusinated EIF5A1 regulates the integrin/ERK signaling pathway via controlling the translation of ARAF. ARAF level is also downregulated in trophoblasts of RM villous tissues and expression of ARAF is positively correlated with EIF5A1. Together, our results suggest that EIF5A1 may be a regulator of trophoblast function at the maternal-fetal interface and low levels of EIF5A1 and ARAF may be associated with RM.


Assuntos
Movimento Celular/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Integrinas/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas A-raf/metabolismo , Proteínas de Ligação a RNA/metabolismo , Trofoblastos/metabolismo , Aborto Habitual/patologia , Linhagem Celular , Proliferação de Células , Feminino , Guanina/análogos & derivados , Guanina/farmacologia , Humanos , Fatores de Iniciação de Peptídeos/genética , Gravidez , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Fator de Iniciação de Tradução Eucariótico 5A
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA