Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 14(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36364725

RESUMO

Growing evidence supports that individual lifestyle factors contribute to the development of non-alcoholic fatty liver disease (NAFLD) without considering the coexistence and synergistic effect of lifestyle factors. Our aim is to derive a healthy lifestyle score (HLS) and estimate its association with NAFLD. In this nationwide cross-sectional study, we derived a five-item HLS including dietary pattern, body mass index, physical activity, cigarette smoking, and sleep duration. NAFLD and clinically significant fibrosis (CSF) were assessed based on vibration-controlled transient elastography (VCTE). Liver function parameters were also tested. Multivariable logistic and linear regressions were applied to investigate the association between HLS and liver diseases. Of the 3893 participants with VCTE examination, approximately 14.1% of participants possessed zero or one healthy lifestyle, 62.5% possessed two or three healthy lifestyles, and 23.4% possessed four or five healthy lifestyles. Compared with participants with a low HLS (0−1 score), the adjusted odds ratios and 95% confidence intervals for those with a high HLS (4−5 score) were 0.25 (0.19~0.33, Ptrend < 0.001) for NAFLD and 0.30 (0.18~0.50, Ptrend < 0.001) for CSF. HLS was positively associated with albumin, total protein, and total bilirubin (all Ptrend ≤ 0.001), and was inversely associated with globulin, alanine aminotransferase, and gamma-glutamyl transaminase (all Ptrend ≤ 0.003). Higher adherence to HLS is associated with lower odds of NAFLD and CSF and may improve liver function. Strategies for the promotion of a healthy lifestyle should be considered as part of NAFLD prevention.


Assuntos
Técnicas de Imagem por Elasticidade , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Estudos Transversais , Estilo de Vida Saudável , Estilo de Vida , Fibrose
2.
Int J Mol Sci ; 22(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34768885

RESUMO

Transfer RNA[Ser]Sec carries multiple post-transcriptional modifications. The A37G mutation in tRNA[Ser]Sec abrogates isopentenylation of base 37 and has a profound effect on selenoprotein expression in mice. Patients with a homozygous pathogenic p.R323Q variant in tRNA-isopentenyl-transferase (TRIT1) show a severe neurological disorder, and hence we wondered whether selenoprotein expression was impaired. Patient fibroblasts with the homozygous p.R323Q variant did not show a general decrease in selenoprotein expression. However, recombinant human TRIT1R323Q had significantly diminished activities towards several tRNA substrates in vitro. We thus engineered mice conditionally deficient in Trit1 in hepatocytes and neurons. Mass-spectrometry revealed that hypermodification of U34 to mcm5Um occurs independently of isopentenylation of A37 in tRNA[Ser]Sec. Western blotting and 75Se metabolic labeling showed only moderate effects on selenoprotein levels and 75Se incorporation. A detailed analysis of Trit1-deficient liver using ribosomal profiling demonstrated that UGA/Sec re-coding was moderately affected in Selenop, Txnrd1, and Sephs2, but not in Gpx1. 2'O-methylation of U34 in tRNA[Ser]Sec depends on FTSJ1, but does not affect UGA/Sec re-coding in selenoprotein translation. Taken together, our results show that a lack of isopentenylation of tRNA[Ser]Sec affects UGA/Sec read-through but differs from a A37G mutation.


Assuntos
Alquil e Aril Transferases/genética , RNA de Transferência/metabolismo , Selenoproteínas/metabolismo , Alquil e Aril Transferases/metabolismo , Animais , Linhagem Celular , Cisteína/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Neurônios/metabolismo , Fosfotransferases/genética , Fosfotransferases/metabolismo , Biossíntese de Proteínas/genética , RNA de Transferência/genética , Ribossomos/metabolismo , Selênio/metabolismo , Selenocisteína/genética , Selenoproteína P/genética , Selenoproteínas/genética
3.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34642250

RESUMO

The tRNA pool determines the efficiency, throughput, and accuracy of translation. Previous studies have identified dynamic changes in the tRNA (transfer RNA) supply and mRNA (messenger RNA) demand during cancerous proliferation. Yet dynamic changes may also occur during physiologically normal proliferation, and these are less well characterized. We examined the tRNA and mRNA pools of T cells during their vigorous proliferation and differentiation upon triggering their antigen receptor. We observed a global signature of switch in demand for codons at the early proliferation phase of the response, accompanied by corresponding changes in tRNA expression levels. In the later phase, upon differentiation, the response of the tRNA pool relaxed back to the basal level, potentially restraining excessive proliferation. Sequencing of tRNAs allowed us to evaluate their diverse base-modifications. We found that two types of tRNA modifications, wybutosine and ms2t6A, are reduced dramatically during T cell activation. These modifications occur in the anticodon loops of two tRNAs that decode "slippery codons," which are prone to ribosomal frameshifting. Attenuation of these frameshift-protective modifications is expected to increase the potential for proteome-wide frameshifting during T cell proliferation. Indeed, human cell lines deleted of a wybutosine writer showed increased ribosomal frameshifting, as detected with an HIV gag-pol frameshifting site reporter. These results may explain HIV's specific tropism toward proliferating T cells since it requires ribosomal frameshift exactly on the corresponding codon for infection. The changes in tRNA expression and modifications uncover a layer of translation regulation during T cell proliferation and expose a potential tradeoff between cellular growth and translation fidelity.


Assuntos
Ativação Linfocitária , RNA de Transferência/metabolismo , Linfócitos T/imunologia , Proliferação de Células/genética , Códon , Mutação da Fase de Leitura , Humanos , Processamento Pós-Transcricional do RNA , Linfócitos T/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA