Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCO Clin Cancer Inform ; 4: 310-317, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32228266

RESUMO

PURPOSE: The modern researcher is confronted with hundreds of published methods to interpret genetic variants. There are databases of genes and variants, phenotype-genotype relationships, algorithms that score and rank genes, and in silico variant effect prediction tools. Because variant prioritization is a multifactorial problem, a welcome development in the field has been the emergence of decision support frameworks, which make it easier to integrate multiple resources in an interactive environment. Current decision support frameworks are typically limited by closed proprietary architectures, access to a restricted set of tools, lack of customizability, Web dependencies that expose protected data, or limited scalability. METHODS: We present the Open Custom Ranked Analysis of Variants Toolkit1 (OpenCRAVAT) a new open-source, scalable decision support system for variant and gene prioritization. We have designed the resource catalog to be open and modular to maximize community and developer involvement, and as a result, the catalog is being actively developed and growing every month. Resources made available via the store are well suited for analysis of cancer, as well as Mendelian and complex diseases. RESULTS: OpenCRAVAT offers both command-line utility and dynamic graphical user interface, allowing users to install with a single command, easily download tools from an extensive resource catalog, create customized pipelines, and explore results in a richly detailed viewing environment. We present several case studies to illustrate the design of custom workflows to prioritize genes and variants. CONCLUSION: OpenCRAVAT is distinguished from similar tools by its capabilities to access and integrate an unprecedented amount of diverse data resources and computational prediction methods, which span germline, somatic, common, rare, coding, and noncoding variants.


Assuntos
Biologia Computacional/organização & administração , Bases de Dados Genéticas/normas , Mutação , Proteínas de Neoplasias/genética , Neoplasias/genética , Software/normas , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Interface Usuário-Computador , Fluxo de Trabalho
2.
Cancer Res ; 77(21): e35-e38, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29092935

RESUMO

Cancer sequencing studies are increasingly comprehensive and well powered, returning long lists of somatic mutations that can be difficult to sort and interpret. Diligent analysis and quality control can require multiple computational tools of distinct utility and producing disparate output, creating additional challenges for the investigator. The Cancer-Related Analysis of Variants Toolkit (CRAVAT) is an evolving suite of informatics tools for mutation interpretation that includes mutation mapping and quality control, impact prediction and extensive annotation, gene- and mutation-level interpretation, including joint prioritization of all nonsilent mutation consequence types, and structural and mechanistic visualization. Results from CRAVAT submissions are explored in an interactive, user-friendly web environment with dynamic filtering and sorting designed to highlight the most informative mutations, even in the context of very large studies. CRAVAT can be run on a public web portal, in the cloud, or downloaded for local use, and is easily integrated with other methods for cancer omics analysis. Cancer Res; 77(21); e35-38. ©2017 AACR.


Assuntos
Biologia Computacional , Genômica , Neoplasias/genética , Software , Exoma/genética , Humanos , Internet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA