Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Discov Med ; 36(186): 1513-1526, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39054721

RESUMO

BACKGROUND: In recent years, various coronaviruses have caused severe respiratory illnesses worldwide. For example the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections of COVID-19 outbreak in 2019 in Wuhan, China. Genome-wide association studies (GWAS) have significantly expanded our comprehension of how specific genetic variations are linked to diseases. Research has demonstrated the existence of genetic factors influencing susceptibility to coronaviruses. The objective of this study was to examine the association of certain loci with the COVID-19 in Saudi population. METHODS: In the present study we have examined the link between the COVID-19 disease and certain genetic variants in hospitalized COVID-19 patients (n = 16) in Tabuk and Bisha, Kingdom Saudi Arabia. We used the genome Analysis Toolkit (GATK) and Comprehensive variant annotation was performed different databases and tools such as Search Tool for the Retrieval of Interacting Genes (STRING), PanelApp and PolyPhen-2. RESULTS: The study showed that the genetic variants associated with genes such as Homeostatic Iron Regulator (HFE) (found in 7 patients, representing 44%), complement factor H (CFH) (6 patients, 38%), cadherin 23 (CDH23) (4 patients, 25%), cytotoxic T-lymphocyte associated protein 4 (CTLA-4) (3 patients, 19%), Transforming Growth Factor Beta 1 (TGFB1) (3 patients, 19%), CREB-binding protein (CREBBP) (2 patients, 13%), E1A Binding Protein P300 (EP300) (2 patients, 13%), hemoglobin subunit beta (HBB) (2 patients, 13%), interferon regulatory factor 7 (IRF7) (2 patients, 13%), and unc-119 lipid binding chaperone (UNC119) (2 patients, 13%) might be associated with susceptibility to coronavirus. We also identified mutations in the COVID-19 patient that are pathogenic or likely pathogenic. CONCLUSION: A recurrent pathogenic mutation, HFE p.His63Asp (H63D), was identified in 7 patients, suggesting its potential contribution to disease severity. Additionally, a likely pathogenic variant, HBB p.Glu7Val (E7V), was present in 2 patients, highlighting its potential role in disease susceptibility. Our results shed light on the key genetic mechanisms of COVID-19 pathogenesis and help to identify and stratify the individuals or populations that are at risk to corona virus infection. The identification of susceptible individuals or populations assist in prevention and/or in treatment programs.


Assuntos
COVID-19 , Sequenciamento do Exoma , Proteína da Hemocromatose , SARS-CoV-2 , Humanos , COVID-19/genética , COVID-19/virologia , COVID-19/mortalidade , SARS-CoV-2/genética , Masculino , Pessoa de Meia-Idade , Feminino , Arábia Saudita/epidemiologia , Proteína da Hemocromatose/genética , Adulto , Predisposição Genética para Doença , Idoso , Mutação , Estudo de Associação Genômica Ampla
2.
Int Immunopharmacol ; 133: 112021, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626549

RESUMO

BACKGROUND: Diabetic retinopathy (DR) stands as a prevalent secondary complication of diabetes, notably Type 1 Diabetes Mellitus (T1D), characterized by immune system involvement potentially impacting the retinal immune response mediated by microglia. Early stages of DR witness blood-retinal barrier permeabilization, facilitating peripheral immune cell interaction with the retinal immune system. Kaempferol (Kae), known for its potent anti-inflammatory activity, presents a promising avenue in DR treatment by targeting the immune mechanisms underlying its onset and progression. Our investigation delves into the molecular intricacies of innate immune cell interaction during DR progression and the attenuation of inflammatory processes pivotal to its pathology. METHODS: Employing in vitro studies, we exposed HAPI microglial and J774.A1 macrophage cells to pro-inflammatory stimuli in the presence or absence of Kae. Ex vivo and in vivo experiments utilized BB rats, a T1D animal model. Retinal explants from BB rats were cultured with Kae, while intraperitoneal Kae injections were administered to BB rats for 15 days. Quantitative PCR, Western blotting, immunofluorescence, and Spectral Domain - Optical Coherence Tomography (SD-OCT) facilitated survival assessment, cellular signaling analysis, and inflammatory marker determination. RESULTS: Results demonstrate Kae significantly mitigates inflammatory processes across in vitro, ex vivo, and in vivo DR models, primarily targeting immune cell responses. Kae administration notably inhibits proinflammatory responses during DR progression while promoting an anti-inflammatory milieu, chiefly through microglia-mediated synthesis of Arginase-1 and Hemeoxygenase-1(HO-1). In vivo, Kae administration effectively preserves retinal integrity amid DR progression. CONCLUSIONS: Our findings elucidate the interplay between retinal and systemic immune cells in DR progression, underscoring a differential treatment response predominantly orchestrated by microglia's anti-inflammatory action. Kae treatment induces a phenotypic and functional shift in immune cells, delaying DR progression, thereby spotlighting microglial cells as a promising therapeutic target in DR management.


Assuntos
Retinopatia Diabética , Quempferóis , Macrófagos , Microglia , Animais , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/imunologia , Retinopatia Diabética/patologia , Microglia/efeitos dos fármacos , Microglia/imunologia , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Ratos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Progressão da Doença , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/imunologia , Retina/efeitos dos fármacos , Retina/patologia , Retina/imunologia , Linhagem Celular , Masculino , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Humanos , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/uso terapêutico , Modelos Animais de Doenças
3.
Front Chem ; 12: 1352009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435669

RESUMO

Glioblastoma multiforme (GBM) is regarded as the most aggressive form of brain tumor delineated by high cellular heterogeneity; it is resistant to conventional therapeutic regimens. In this study, the anti-cancer potential of garcinol, a naturally derived benzophenone, was assessed against GBM. During the analysis, we observed a reduction in the viability of rat glioblastoma C6 cells at a concentration of 30 µM of the extract (p < 0.001). Exposure to garcinol also induced nuclear fragmentation and condensation, as evidenced by DAPI-stained photomicrographs of C6 cells. The dissipation of mitochondrial membrane potential in a dose-dependent fashion was linked to the activation of caspases. Furthermore, it was observed that garcinol mediated the inhibition of NF-κB (p < 0.001) and decreased the expression of genes associated with cell survival (Bcl-XL, Bcl-2, and survivin) and proliferation (cyclin D1). Moreover, garcinol showed interaction with NF-κB through some important amino acid residues, such as Pro275, Trp258, Glu225, and Gly259 during molecular docking analysis. Comparative analysis with positive control (temozolomide) was also performed. We found that garcinol induced apoptotic cell death via inhibiting NF-κB activity in C6 cells, thus implicating it as a plausible therapeutic agent for GBM.

4.
J Appl Genet ; 65(1): 83-93, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37875608

RESUMO

Melanoma, a highly invasive type of skin cancer that penetrates the entire dermis layer, is associated with increased mortality rates. Excessive exposure of the skin to sunlight, specifically ultraviolet radiation, is the underlying cause of this malignant condition. The appearance of unique skin moles represents a visible clue, referred to as the "ugly duckling" sign, indicating the presence of melanoma and its association with cellular DNA damage. This research aims to explore potential biomarkers derived from microarray data, employing bioinformatics techniques and methodologies, for a thorough investigation of melanoma skin cancer. The microarray dataset for melanoma skin cancer was obtained from the GEO database, and thorough data analysis and quality control measures were performed to identify differentially expressed genes (DEGs). The top 14 highly expressed DEGs were identified, and their gene information and protein sequences were retrieved from the NCBI gene and protein database. These proteins were further analyzed for domain identification and network analysis. Gene expression analysis was conducted to visualize the upregulated and downregulated genes. Additionally, gene metabolite network analysis was carried out to understand the interactions between highly interconnected genes and regulatory transcripts. Molecular docking was employed to investigate the ligand-binding sites and visualize the three-dimensional structure of proteins. Our research unveiled a collection of genes with varying expression levels, some elevated and others reduced, which could function as promising biomarkers closely linked to the development and advancement of melanoma skin cancer. Through molecular docking analysis of the GINS2 protein, we identified two natural compounds (PubChem-156021169 and PubChem-60700) with potential as inhibitors against melanoma. This research has implications for early detection, treatment, and understanding the molecular basis of melanoma.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/metabolismo , Simulação de Acoplamento Molecular , Raios Ultravioleta , Neoplasias Cutâneas/genética , Perfilação da Expressão Gênica/métodos , Biomarcadores , Redes Reguladoras de Genes , Biologia Computacional/métodos , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo
5.
J Cancer ; 14(16): 3023-3027, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859809

RESUMO

Notch deregulation has been reported in various types of cancers, including Oral squamous cell carcinomas (OSCCs). The role of Notch1 signaling in oral squamous cell carcinoma (OSCC) remains poorly understood. In this study, NOTCH1 was aberrantly expressed in human oral cancer tissues compared with that in normal marginal tissues and was associated with poor prognosis. The positive Notch 1 expression was significantly associated with poor tumor differentiation status. Kaplan-Meier survival curves revealed that elevated cytoplasmic NOTCH1 expression levels in OSCC patients were associated with poor overall survival. Moreover, multivariate COX proportional hazard models revealed that T N status, AJCC stage histological grade were independent prognostic factors for survival. Our result clearly demonstrates the oncogenic role of Notch1 in oral cancer and Notch1 may be a useful biomarker to target oral cancer patients.

6.
Curr Issues Mol Biol ; 45(5): 3933-3952, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37232720

RESUMO

The regulation of apoptosis (the programmed cell death) is dependent on the crucial involvement of BCL2 and BAX. The Bax-248G>A and Bcl-2-938 C>A polymorphic variations in the promoter sequences of the Bax and Bcl-2 gene have been recently associated with low Bax expression, progression to advanced stages, treatment resistance, and shortened overall survival rate in some hematological malignancies, including chronic myeloid leukemia (CML) and other myeloproliferative neoplasms. Chronic inflammation has been linked to various stages of carcinogenesis wherein pro-inflammatory cytokines play diverse roles in influencing cancer microenvironment leading to cell invasion and cancer progression. Cytokines such as TNF-α and IL-8 have been implicated in cancer growth in both solid and hematological malignancies with studies showing their elevated levels in patients. Genomic approaches have in recent years provided significant knowledge with the regard to the association of certain SNPs (single nucleotide polymerphisms) either in a gene or its promoter that can influence its expression, with the risk and susceptibility to human diseases including cancer. This study has investigated the consequences of promoter SNPs in apoptosis genes Bax-248G>A (rs4645878)/Bcl-2-938C>A (rs2279115) and pro-inflammatory cytokines TNF-α rs1800629 G>A/IL-8 rs4073 T>A on the risk and susceptibility towards hematological cancers. The study design has 235 individuals both male and female enrolled as subjects that had 113 cases of MPDs (myeloproliferative disorders) and 122 healthy individuals as controls. The genotyping studies were conducted through ARMS PCR (amplification-refractory mutation system PCR). The Bcl-2-938 C>A polymorphism showed up in 22% of patients in the study, while it was observed in only 10% of normal controls. This difference in genotype and allele frequency between the two groups was significant (p = 0.025). Similarly, the Bax-248G>A polymorphism was detected in 6.48% of the patients and 4.54% of the normal controls, with a significant difference in genotype and allele frequency between the groups (p = 0.048). The results suggest that the Bcl-2-938 C>A variant is linked to an elevated risk of MPDs in the codominant, dominant, and recessive inheritance models. Moreover, the study indicated allele A as risk allele which can significantly increase the risk of MPDs unlike the C allele. In case of Bax gene covariants, these were associated with an increased risk of MPDs in the codominant inheritance model and dominant inheritance model. It was found that the allele A significantly enhanced the risk of MPDs unlike the G allele. The frequencies of IL-8 rs4073 T>A in patients was found to be TT (16.39%), AT (36.88%) and AA (46.72%), compared to controls who were more likely to have frequencies of TT (39.34%), AT (37.70%) and AA (22.95%) as such, respectively. There was a notable overrepresentation of the AA genotype and GG homozygotes among patients compared to controls in TNF-α polymorphic variants, with 6.55% of patients having the AA genotype and 84% of patients being GG homozygotes, compared to 1.63% and 69%, respectively in controls. The data from the current study provide partial but important evidence that polymorphisms in apoptotic genes Bcl-2-938C>A and Bax-248G>A and pro-inflammatory cytokines IL-8 rs4073 T>A and TNF-α G>A may help predict the clinical outcomes of patients and determine the significance of such polymorphic variations in the risk of myeloproliferative diseases and their role as prognostic markers in disease management using a case-control study approach.

7.
Life (Basel) ; 13(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240845

RESUMO

Stroke is a key cerebrovascular disease and important cause of death and disability worldwide, including in the kingdom of Saudi Arabia (KSA). It has a large economic burden and serious socioeconomic impacts on patients, their families and the community. The incidence of ischemic stroke is probably increased by the interaction of GSTT1 and GSTM1 null genotypes with high blood pressure, diabetes and cigarette smoking. The roles of VWF, GSTs and TNF-alpha gene variations in the induction of stroke are still uncertain and require further examination. In the current study, we studied the associations of SNPs in the genes VWF, GSTs and TNF-alpha with stroke in the Saudi population. Genotyping was performed using the ARMS -PCR for TNF-alpha, AS-PCR for VWF and multiplex PCR for GSTs. The study included 210 study subjects: 100 stroke cases and 110 healthy controls. We obtained significant distributions of VWF rs61748511 T > C, TNF-alpha rs1800629 G > A and GST rs4025935 and rs71748309 genotypes between stroke cases and the healthy controls (p < 0.05). The results also indicated that the TNF-alpha A allele was associated with risk of stroke with odd ratio (OR) = 2.22 and risk ratio = RR 2.47, p < 0.05. Similarly, the VWF-TC genotype and C allele were strongly linked with stroke with OR = 8.12 and RR 4.7, p < 0.05. In addition, GSTT1 and GSTT1 null genotype was strongly associated with stroke predisposition with OR = 8.30 and RR = 2.25, p < 0.0001. We conclude that there is a possible strong association between the VWF-T > C, TNF-alpha G > A, GSTT1 gene variants and ischemic stroke susceptibility in the Saudi population. However, future well-designed and large-scale case-control studies on protein-protein interactions and protein functional studies are required to verify these findings and examine the effects of these SNPs on these proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA