Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(3): e202314621, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37953402

RESUMO

Bivalency is a prevalent natural mechanism to enhance receptor avidity. Various two-domain disulfide-rich peptides exhibiting bivalent action have been identified from animal venoms. A unique characteristic of these peptides is that they induce a pharmacological response different from that provoked by any of the constituent domains. The enhanced potency and avidity of such peptides is therefore a consequence of their domain fusion by a peptide linker. The role of the linker itself, beyond conjugation, remains unclear. Here, we investigate how the linker affects the bivalency of the capsaicin receptor (TRPV1) agonist DkTx. We recombinantly produced isotope labelled DkTx using a protein splicing approach, to solve the high-resolution solution structure of DkTx, revealing residual linker order stabilised by linker-domain interactions leading to biased domain orientations. The significance of this was studied using a combination of mutagenesis, spin relaxation studies and electrophysiology measurements. Our results reveal that disrupting the pre-organisation of the domains of DkTx is accompanied by reductions in potency and onset of avidity. Our findings support a model of pre-configured two-domain binding, in favour of the previously suggested sequential binding model. This highlights the significance of ordered elements in linker design and the natural evolution of these in bivalent toxins.


Assuntos
Toxinas Biológicas , Animais , Peptídeos , Fenômenos Eletrofisiológicos
2.
ACS Omega ; 8(29): 26276-26286, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521635

RESUMO

Numerous spider venom-derived gating modifier toxins exhibit conformational heterogeneity during purification by reversed-phase high-performance liquid chromatography (RP-HPLC). This conformational exchange is especially peculiar for peptides containing an inhibitor cystine knot motif, which confers excellent structural stability under conditions that are not conducive to disulfide shuffling. This phenomenon is often attributed to proline cis/trans isomerization but has also been observed in peptides that do not contain a proline residue. Pn3a is one such peptide forming two chromatographically distinguishable peaks that readily interconvert following the purification of either conformer. The nature of this exchange was previously uncharacterized due to the fast rate of conversion in solution, making isolation of the conformers impossible. In the present study, an N-terminal modification of Pn3a enabled the isolation of the individual conformers, allowing activity assays to be conducted on the individual conformers using electrophysiology. The conformers were analyzed separately by nuclear magnetic resonance spectroscopy (NMR) to study their structural differences. RP-HPLC and NMR were used to study the mechanism of exchange. The later-eluting conformer was the active conformer with a rigid structure that corresponds to the published structure of Pn3a, while NMR analysis revealed the earlier-eluting conformer to be inactive and disordered. The exchange was found to be pH-dependent, arising in acidic solutions, possibly due to reversible disruption and formation of intramolecular salt bridges. This study reveals the nature of non-proline conformational exchange observed in Pn3a and possibly other disulfide-rich peptides, highlighting that the structure and activity of some disulfide-stabilized peptides can be dramatically susceptible to disruption.

3.
Nat Commun ; 14(1): 2442, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117223

RESUMO

Voltage-gated sodium (NaV) channels are critical regulators of neuronal excitability and are targeted by many toxins that directly interact with the pore-forming α subunit, typically via extracellular loops of the voltage-sensing domains, or residues forming part of the pore domain. Excelsatoxin A (ExTxA), a pain-causing knottin peptide from the Australian stinging tree Dendrocnide excelsa, is the first reported plant-derived NaV channel modulating peptide toxin. Here we show that TMEM233, a member of the dispanin family of transmembrane proteins expressed in sensory neurons, is essential for pharmacological activity of ExTxA at NaV channels, and that co-expression of TMEM233 modulates the gating properties of NaV1.7. These findings identify TMEM233 as a previously unknown NaV1.7-interacting protein, position TMEM233 and the dispanins as accessory proteins that are indispensable for toxin-mediated effects on NaV channel gating, and provide important insights into the function of NaV channels in sensory neurons.


Assuntos
Toxinas Biológicas , Urtica dioica , Austrália , Dor , Peptídeos , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo
4.
Nat Commun ; 14(1): 1036, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823422

RESUMO

Multivalent ligands of ion channels have proven to be both very rare and highly valuable in yielding unique insights into channel structure and pharmacology. Here, we describe a bivalent peptide from the venom of Xibalbanus tulumensis, a troglobitic arthropod from the enigmatic class Remipedia, that causes persistent calcium release by activation of ion channels involved in muscle contraction. The high-resolution solution structure of φ-Xibalbin3-Xt3a reveals a tandem repeat arrangement of inhibitor-cysteine knot (ICK) domains previously only found in spider venoms. The individual repeats of Xt3a share sequence similarity with a family of scorpion toxins that target ryanodine receptors (RyR). Single-channel electrophysiology and quantification of released Ca2+ stores within skinned muscle fibers confirm Xt3a as a bivalent RyR modulator. Our results reveal convergent evolution of RyR targeting toxins in remipede and scorpion venoms, while the tandem-ICK repeat architecture is an evolutionary innovation that is convergent with toxins from spider venoms.


Assuntos
Canal de Liberação de Cálcio do Receptor de Rianodina , Venenos de Escorpião , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Cálcio/metabolismo , Rianodina/farmacologia , Sequência de Aminoácidos , Peptídeos/química , Venenos de Escorpião/farmacologia , Venenos de Escorpião/química
5.
Protein Sci ; 32(2): e4566, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36644825

RESUMO

Receptor avidity through multivalency is a highly sought-after property of ligands. While readily available in nature in the form of bivalent antibodies, this property remains challenging to engineer in synthetic molecules. The discovery of several bivalent venom peptides containing two homologous and independently folded domains (in a tandem repeat arrangement) has provided a unique opportunity to better understand the underpinning design of multivalency in multimeric biomolecules, as well as how naturally occurring multivalent ligands can be identified. In previous work, we classified these molecules as a larger class termed secreted cysteine-rich repeat-proteins (SCREPs). Here, we present an online resource; ScrepYard, designed to assist researchers in identification of SCREP sequences of interest and to aid in characterizing this emerging class of biomolecules. Analysis of sequences within the ScrepYard reveals that two-domain tandem repeats constitute the most abundant SCREP domain architecture, while the interdomain "linker" regions connecting the functional domains are found to be abundant in amino acids with short or polar sidechains and contain an unusually high abundance of proline residues. Finally, we demonstrate the utility of ScrepYard as a virtual screening tool for discovery of putatively multivalent peptides, by using it as a resource to identify a previously uncharacterized serine protease inhibitor and confirm its predicted activity using an enzyme assay.


Assuntos
Dissulfetos , Peptídeos , Sequência de Aminoácidos , Peptídeos/química , Sequências de Repetição em Tandem , Aminoácidos
6.
J Biol Chem ; 298(5): 101857, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35337798

RESUMO

Innate immune signaling by Toll-like receptors (TLRs) involves receptor phosphorylation, which helps to shape and drive key inflammatory outputs, yet our understanding of the kinases and mechanisms that mediate TLR phosphorylation is incomplete. Spleen tyrosine kinase (Syk) is a nonreceptor protein tyrosine kinase, which is known to relay adaptive and innate immune signaling, including from TLRs. However, TLRs do not contain the conserved dual immunoreceptor tyrosine-based activation motifs that typically recruit Syk to many other receptors. One possibility is that the Syk-TLR association is indirect, relying on an intermediary scaffolding protein. We previously identified a role for the palmitoylated transmembrane adapter protein SCIMP in scaffolding the Src tyrosine kinase Lyn, for TLR phosphorylation, but the role of SCIMP in mediating the interaction between Syk and TLRs has not yet been investigated. Here, we show that SCIMP recruits Syk in response to lipopolysaccharide-mediated TLR4 activation. We also show that Syk contributes to the phosphorylation of SCIMP and TLR4 to enhance their binding. Further evidence pinpoints two specific phosphorylation sites in SCIMP critical for its interaction with Syk-SH2 domains in the absence of immunoreceptor tyrosine-based activation motifs. Finally, using inhibitors and primary macrophages from SCIMP-/- mice, we confirm a functional role for SCIMP-mediated Syk interaction in modulating TLR4 phosphorylation, signaling, and cytokine outputs. In conclusion, we identify SCIMP as a novel, immune-specific Syk scaffold, which can contribute to inflammation through selective TLR-driven inflammatory responses.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Membrana , Quinase Syk , Receptor 4 Toll-Like , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Macrófagos/enzimologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Quinase Syk/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Tirosina/metabolismo , Quinases da Família src/metabolismo
7.
Curr Res Struct Biol ; 3: 179-186, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34401749

RESUMO

Chlorotoxin (ClTx) is a 36-residue disulfide-rich peptide isolated from the venom of the scorpion Leiurus quinquestriatus. This peptide has been shown to selectively bind to brain tumours (gliomas), however, with conflicting reports regarding its direct cellular target. Recently, the vascular endothelial growth factor receptor, neuropilin-1 (NRP1) has emerged as a potential target of the peptide. Here, we sought to characterize the details of the binding of ClTx to the b1-domain of NRP1 (NRP1-b1) using solution state nuclear magnetic resonance (NMR) spectroscopy. The 3D structure of the isotope labelled peptide was solved using multidimensional heteronuclear NMR spectroscopy to produce a well-resolved structural ensemble. The structure points to three putative protein-protein interaction interfaces, two basic patches (R14/K15/K23 and R25/K27/R36) and a hydrophobic patch (F6/T7/T8/H10). The NRP1-b1 binding interface of ClTx was elucidated using 15N chemical shift mapping and included the R25/K27/R36 region of the peptide. The thermodynamics of binding was determined using isothermal titration calorimetry (ITC). In both NMR and ITC measurements, the binding was shown to be competitive with a known NRP1-b1 inhibitor. Finally, combining all of this data we generate a model of the ClTx:NRP1-b1 complex. The data shows that the peptide binds to the same region of NRP1 that is used by the SARS-CoV-2 virus for cell entry, however, via a non-canonical binding mode. Our results provide evidence for a non-standard NRP1 binding motif, while also providing a basis for further engineering of ClTx to generate peptides with improved NRP1 binding for future biomedical applications.

8.
Biochem Pharmacol ; 181: 114148, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32663452

RESUMO

Chronic pain is a common and often debilitating condition. Existing treatments are either inefficacious or associated with a wide range of side effects. The progress on developing safer and more effective analgesics has been slow, in large part due to our limited understanding of the physiological mechanisms underlying pain in different diseases. Generation and propagation of action potentials is a central component of pain sensation and voltage-gated sodium channels (NaVs) play a critical role in this process. In particular, the NaV subtype 1.7, has emerged as a promising universal target for the treatment of pain. Recently, a spider venom peptide, µ-TRTX-Pn3a, was found to be a highly selective inhibitor of NaV1.7. Here, we report the first recombinant expression method for Pn3a in a bacterial host, which provides an inexpensive route to production. Furthermore, we have developed a method for bio-conjugation of our recombinantly produced Pn3a via sortase A-mediated ligation, providing avenues for further pre-clinical development. We demonstrate how heterologous expression in bacteria enables facile isotope labelling of Pn3a, which allowed us to study the membrane binding properties of the peptide by high-resolution solution-state nuclear magnetic resonance (NMR) spectroscopy using a recently developed lipid nanodisc system. The heteronuclear NMR data indicate that the C-terminal region of the peptide undergoes a conformational change upon lipid binding. The membrane binding properties of Pn3a are further validated using isothermal titration calorimetry (ITC), which revealed that Pn3a binds to zwitterionic planar lipid bilayers with thermodynamics that are largely driven by enthalpic contributions.


Assuntos
Membrana Celular/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Peptídeos/metabolismo , Proteínas Recombinantes/metabolismo , Bloqueadores dos Canais de Sódio/metabolismo , Animais , Membrana Celular/química , Células HEK293 , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Espectroscopia de Ressonância Magnética , Potenciais da Membrana/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Técnicas de Patch-Clamp , Peptídeos/química , Peptídeos/genética , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/farmacologia , Venenos de Aranha/química , Venenos de Aranha/metabolismo
9.
Proc Natl Acad Sci U S A ; 117(21): 11399-11408, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32398368

RESUMO

Spiders are one of the most successful venomous animals, with more than 48,000 described species. Most spider venoms are dominated by cysteine-rich peptides with a diverse range of pharmacological activities. Some spider venoms contain thousands of unique peptides, but little is known about the mechanisms used to generate such complex chemical arsenals. We used an integrated transcriptomic, proteomic, and structural biology approach to demonstrate that the lethal Australian funnel-web spider produces 33 superfamilies of venom peptides and proteins. Twenty-six of the 33 superfamilies are disulfide-rich peptides, and we show that 15 of these are knottins that contribute >90% of the venom proteome. NMR analyses revealed that most of these disulfide-rich peptides are structurally related and range in complexity from simple to highly elaborated knottin domains, as well as double-knot toxins, that likely evolved from a single ancestral toxin gene.


Assuntos
Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Venenos de Aranha/química , Animais , Proteínas de Artrópodes/análise , Austrália , Dípteros/efeitos dos fármacos , Dissulfetos , Evolução Molecular , Feminino , Perfilação da Expressão Gênica , Espectrometria de Massas , Peptídeos/análise , Peptídeos/química , Peptídeos/genética , Filogenia , Conformação Proteica , Proteômica/métodos , Venenos de Aranha/genética , Venenos de Aranha/toxicidade , Aranhas/genética
10.
Toxicon ; 168: 104-112, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31302115

RESUMO

Sea anemone venoms have long been recognised as a rich source of peptides with interesting pharmacological and structural properties. Our recent transcriptomic studies of the Australian sea anemone Actinia tenebrosa have identified a novel 13-residue peptide, U-AITx-Ate1. U-AITx-Ate1 contains a single disulfide bridge and bears no significant homology to previously reported amino acid sequences of peptides from sea anemones or other species. We have produced U-AITx-Ate1 using solid-phase peptide synthesis, followed by oxidative folding and purification of the folded peptide using reversed-phase high-performance liquid chromatography. The solution structure of U-AITx-Ate1 was determined based on two-dimensional nuclear magnetic resonance spectroscopic data. Diffusion-ordered NMR spectroscopy revealed that U-AITx-Ate1 was monomeric in solution. Perturbations in the 1D 1H NMR spectrum of U-AITx-Ate1 in the presence of dodecylphosphocholine micelles together with molecular dynamics simulations indicated an interaction of U-AITx-Ate1 with lipid membranes, although no binding was detected to 100% POPC and 80% POPC: 20% POPG lipid nanodiscs by isothermal titration calorimetry. Functional assays were performed to explore the biological activity profile of U-AITx-Ate1. U-AITx-Ate1 showed no activity in voltage-clamp electrophysiology assays and no change in behaviour and mortality rates in crustacea. Moderate cytotoxic activity was observed against two breast cancer cell lines.


Assuntos
Peptídeos/química , Anêmonas-do-Mar/química , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Decápodes , Humanos , Células MCF-7 , Simulação de Dinâmica Molecular , Oócitos , Peptídeos/síntese química , Peptídeos/toxicidade , Transcriptoma , Xenopus laevis
11.
Protein Expr Purif ; 161: 1-7, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31022449

RESUMO

We have developed a new ligation independent cloning (LIC) vector - pSrtA9, which can be utilized for one-step purification of recombinant proteins. The new LIC site in the pSrtA9 vector, hosts a DNA sequence centered on a SfoI restriction site and integrates a coding sequence for sortase A (SrtA) recognition. Preceding the LIC site, pSrtA9 incorporates an N-terminal 6xHis-tag and the catalytic core of SrtA from Staphylococcus aureus (SrtAΔ59). Thus, after cloning and protein expression in Escherichia coli, the resultant fusion protein comprises an N-terminal 6xHis-tag, SrtAΔ59, an L-P-E-T-G linker and the protein of interest at the C-terminus. The fusion protein can be captured onto immobilized Ni-NTA resin and any unwanted proteolysis activity of SrtA is suppressed during the purification by optimisation of solution conditions. Upon addition of Ca2+ and triglycine (Gly3), the immobilized fusion protein undergoes on-column SrtA-mediated cleavage at the T-G bond of LPETG linker to selectively release 90% of the protein of interest within 3 h when incubated at room temperature. This new pSrtA9 vector, thus, offers an efficient method for LIC of genes and a one-step purification procedure to obtain a tag-free recombinant protein, and is therefore suitable for the high-throughput proteins production.


Assuntos
Aminoaciltransferases/genética , Proteínas de Bactérias/genética , Clonagem Molecular/métodos , Cisteína Endopeptidases/genética , Vetores Genéticos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Motivos de Aminoácidos , Aminoaciltransferases/química , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Staphylococcus aureus/genética
12.
Front Med (Lausanne) ; 6: 22, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809524

RESUMO

Squamous cell carcinoma (SCC) accounts for the majority of non-melanoma skin cancer related deaths, particularly in immunosuppressed persons. Identification of biomarkers that could be used to identify or treat SCC would be of significant benefit. The anthrax toxin receptors, Tumor Endothelial Marker 8 (TEM8) and Capillary Morphogenesis Gene 2 (CMG2), are endothelial receptors involved in extracellular matrix homeostasis and angiogenesis that are selectively upregulated on numerous tumors. One method of targeting these receptors is Protective Antigen (PA), a protein produced by B. anthracis that mediates binding and translocation of anthrax toxins into cells. PA targeted toxins have been demonstrated to selectively inhibit tumor growth and angiogenesis, but tumor selectivity of PA is currently unknown. In this work fluorescently labeled PA was shown to maintain receptor dependent binding and internalization in vitro. Utilizing a human papillomavirus transgenic mouse model that develops cutaneous SCC in response to ultraviolet irradiation we identified tumor uptake of PA in vivo. The intravenously administered PA resulted in tumor specific localization, with exclusive tumor detection 24 h post injection. Ex vivo analysis identified significantly higher fluorescence in the tumor compared to adjacent healthy tissue and major clearance organs, demonstrating low non-specific uptake and rapid clearance. While both TEM8 and CMG2 were observed to be overexpressed in SCC tumor sections compared to control skin, the intravenously administered PA was primarily co-localized with TEM8. These results suggest that PA could be systemically administered for rapid identification of cutaneous SCC, with potential for further therapeutic development.

13.
Front Chem ; 7: 889, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32039137

RESUMO

Disulfide bridges in proteins are formed by the oxidation of pairs of cysteine residues. These cross-links play a critical role in stabilizing the 3D-structure of small disulfide rich polypeptides such as hormones and venom toxins. The arrangement of the multiple disulfide bonds directs the peptide fold into distinct structural motifs that have evolved for resistance against biochemical and physical insults. These structural scaffolds have, therefore, proven to be very attractive in bioengineering efforts to develop novel biologics with applications in health and agriculture. Structural characterization of small disulfide rich peptides (DRPs) presents unique challenges when using commonly applied biophysical methods. NMR is the most commonly used method for studying such molecules, where the relatively small size of these molecules results in highly precise structural ensembles defined by a large number of distance and dihedral angle restraints per amino acid. However, in NMR the sulfur atoms that are involved in three of the five dihedral angles in a disulfide bond cannot be readily measured. Given the central role of disulfide bonds in the structure of these molecules, it is unclear what the inherent resolution of such NMR structures is when using traditional NMR methods. Here, we use an extensive set of long-range residual dipolar couplings (RDCs) to assess the resolution of the NMR structure of a disulfide-rich peptide. We find that structures based primarily on NOEs, yield ensembles that are equivalent to a crystallographic resolution of 2-3 Å in resolution, and that incorporation of RDCs reduces this to ~1-1.5 Å resolution. At this resolution the sidechain of ordered amino acids can be defined accurately, allowing the geometry of the cysteine bridges to be better defined, and allowing for disulfide-bond connectivities to be determined with high confidence. The observed improvements in resolution when using RDCs is remarkable considering the small size of these peptides.

14.
Front Pharmacol ; 9: 1333, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524283

RESUMO

Peptide toxins isolated from animal venom secretions have proven to be useful pharmacological tools for probing the structure and function of a number of molecular receptors. Their molecular structures are stabilized by posttranslational formation of multiple disulfide bonds formed between sidechain thiols of cysteine residues, resulting in high thermal and chemical stability. Many of these peptides have been found to be potent modulators of ion channels, making them particularly influential in this field. Recently, several peptide toxins have been described that have an unusual tandem repeat organization, while also eliciting a unique pharmacological response toward ion channels. Most of these are two-domain peptide toxins from spider venoms, such as the double-knot toxin (DkTx), isolated from the Earth Tiger tarantula (Haplopelma schmidti). The unusual pharmacology of DkTx is its high avidity for its receptor (TRPV1), a property that has been attributed to a bivalent mode-of-action. DkTx has subsequently proven a powerful tool for elucidating the structural basis for the function of the TRPV1 channel. Interestingly, all tandem repeat peptides functionally characterized to date share this high avidity to their respective binding targets, suggesting they comprise an unrecognized structural class of peptides with unique structural features that result in a characteristic set of pharmacological properties. In this article, we explore the prevalence of this emerging class of peptides, which we have named Secreted, Cysteine-rich REpeat Peptides, or "SCREPs." To achieve this, we have employed data mining techniques to extract SCREP-like sequences from the UniProtKB database, yielding approximately sixty thousand candidates. These results indicate that SCREPs exist within a diverse range of species with greatly varying sizes and predicted fold types, and likely include peptides with novel structures and unique modes of action. We present our approach to mining this database for discovery of novel ion-channel modulators and discuss a number of "hits" as promising leads for further investigation. Our database of SCREPs thus constitutes a novel resource for biodiscovery and highlights the value of a data-driven approach to the identification of new bioactive pharmacological tools and therapeutic lead molecules.

15.
Neurosci Lett ; 679: 35-47, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29684532

RESUMO

Voltage-gated ion channels (VGICs) are specialised ion channels that have a voltage dependent mode of action, where ion conduction, or gating, is controlled by a voltage-sensing mechanism. VGICs are critical for electrical signalling and are therefore important pharmacological targets. Among these, voltage-gated sodium channels (NaVs) have attracted particular attention as potential analgesic targets. NaVs, however, comprise several structurally similar subtypes with unique localisations and distinct functions, ranging from amplification of action potentials in nociception (e.g. NaV1.7) to controlling electrical signalling in cardiac function (NaV1.5). Understanding the structural basis of NaV function is therefore of great significance, both to our knowledge of electrical signalling and in development of subtype and state selective drugs. An important tool in this pursuit has been the use of peptides from animal venoms as selective NaV modulators. In this review, we look at peptides, particularly from spider venoms, that inhibit NaVs by binding to the voltage sensing domain (VSD) of this channel, known as gating modifier toxins (GMT). In the first part of the review, we look at the structural determinants of voltage sensing in VGICs, the gating cycle and the conformational changes that accompany VSD movement. Next, the modulation of the analgesic target NaV1.7 by GMTs is reviewed to develop bioinformatic tools that, based on sequence information alone, can identify toxins that are likely to inhibit this channel. The same approach is also used to define VSD sequences, other than that from NaV1.7, which are likely to be sensitive to this class of toxins. The final section of the review focuses on the important role of the cellular membrane in channel modulation and also how the lipid composition affects measurements of peptide-channel interactions both in binding kinetics measurements in solution and in cell-based functional assays.


Assuntos
Ativação do Canal Iônico/efeitos dos fármacos , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Analgésicos/farmacologia , Animais , Membrana Celular/metabolismo , Humanos , Canais Iônicos/metabolismo , Peptídeos/farmacologia , Venenos de Aranha/química , Canais de Sódio Disparados por Voltagem/química
16.
Proc Natl Acad Sci U S A ; 114(32): E6480-E6489, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28739909

RESUMO

MyD88 adaptor-like (MAL) is a critical protein in innate immunity, involved in signaling by several Toll-like receptors (TLRs), key pattern recognition receptors (PRRs). Crystal structures of MAL revealed a nontypical Toll/interleukin-1 receptor (TIR)-domain fold stabilized by two disulfide bridges. We therefore undertook a structural and functional analysis of the role of reactive cysteine residues in the protein. Under reducing conditions, the cysteines do not form disulfides, but under oxidizing conditions they are highly amenable to modification. The solution structure of the reduced form of the MAL TIR domain, determined by NMR spectroscopy, reveals a remarkable structural rearrangement compared with the disulfide-bonded structure, which includes the relocation of a ß-strand and repositioning of the functionally important "BB-loop" region to a location more typical for TIR domains. Redox measurements by NMR further reveal that C91 has the highest redox potential of all cysteines in MAL. Indeed, mass spectrometry revealed that C91 undergoes glutathionylation in macrophages activated with the TLR4 ligand lipopolysaccharide (LPS). The C91A mutation limits MAL glutathionylation and acts as a dominant negative, blocking the interaction of MAL with its downstream target MyD88. The H92P mutation mimics the dominant-negative effects of the C91A mutation, presumably by preventing C91 glutathionylation. The MAL C91A and H92P mutants also display diminished degradation and interaction with interleukin-1 receptor-associated kinase 4 (IRAK4). We conclude that in the cell, MAL is not disulfide-bonded and requires glutathionylation of C91 for signaling.


Assuntos
Glutationa/metabolismo , Glicoproteínas de Membrana , Processamento de Proteína Pós-Traducional , Receptores de Interleucina-1 , Transdução de Sinais , Substituição de Aminoácidos , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Glutationa/química , Glutationa/genética , Células HEK293 , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Estrutura Secundária de Proteína , Receptores de Interleucina-1/química , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Relação Estrutura-Atividade
17.
Adv Pharmacol ; 79: 199-223, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28528669

RESUMO

Venom peptides are natural ligands of ion channels and have been used extensively in pharmacological characterization of various ion channels and receptors. In this chapter, we survey all known venom peptide ion-channel modulators. Our survey reveals that the majority of venom peptides characterized to date target voltage-gated sodium or potassium channels. We further find that the majority of these peptides are found in scorpion and spider venoms. We discuss the influence of the pharmacological tools available in biasing discovery and the classical "toxin-to-sequence" approach to venom peptide biodiscovery. The impact of high-throughput sequencing on the existing discovery framework is likely to be significant and we propose here an alternative "sequence-to-toxin" approach to peptide screening, relying more on recently developed high-throughput methods. Methods for production and characterization of disulfide rich toxins in a high-throughput setting are then described, focusing on bacterial protein expression and solution state structural characterization by NMR spectroscopy. Finally, the role of X-ray crystallography and cryo-EM are highlighted by discussing the currently known channel-peptide complexes.


Assuntos
Cisteína/química , Canais Iônicos/metabolismo , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Humanos , Peptídeos/química , Canais de Potássio/metabolismo , Venenos de Aranha/farmacologia
18.
Sci Rep ; 7(1): 974, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28428547

RESUMO

Voltage-gated sodium (NaV) channels are essential for the transmission of pain signals in humans making them prime targets for the development of new analgesics. Spider venoms are a rich source of peptide modulators useful to study ion channel structure and function. Here we describe ß/δ-TRTX-Pre1a, a 35-residue tarantula peptide that selectively interacts with neuronal NaV channels inhibiting peak current of hNaV1.1, rNaV1.2, hNaV1.6, and hNaV1.7 while concurrently inhibiting fast inactivation of hNaV1.1 and rNaV1.3. The DII and DIV S3-S4 loops of NaV channel voltage sensors are important for the interaction of Pre1a with NaV channels but cannot account for its unique subtype selectivity. Through analysis of the binding regions we ascertained that the variability of the S1-S2 loops between NaV channels contributes substantially to the selectivity profile observed for Pre1a, particularly with regards to fast inactivation. A serine residue on the DIV S2 helix was found to be sufficient to explain Pre1a's potent and selective inhibitory effect on the fast inactivation process of NaV1.1 and 1.3. This work highlights that interactions with both S1-S2 and S3-S4 of NaV channels may be necessary for functional modulation, and that targeting the diverse S1-S2 region within voltage-sensing domains provides an avenue to develop subtype selective tools.


Assuntos
Peptídeos/farmacologia , Venenos de Aranha/química , Aranhas/química , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Animais , Sítios de Ligação , Regulação da Expressão Gênica , Células HEK293 , Humanos , Modelos Moleculares , Peptídeos/química , Ligação Proteica , Estrutura Secundária de Proteína , Venenos de Aranha/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo
19.
Proc Natl Acad Sci U S A ; 114(14): 3750-3755, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28320941

RESUMO

Stroke is the second-leading cause of death worldwide, yet there are no drugs available to protect the brain from stroke-induced neuronal injury. Acid-sensing ion channel 1a (ASIC1a) is the primary acid sensor in mammalian brain and a key mediator of acidosis-induced neuronal damage following cerebral ischemia. Genetic ablation and selective pharmacologic inhibition of ASIC1a reduces neuronal death following ischemic stroke in rodents. Here, we demonstrate that Hi1a, a disulfide-rich spider venom peptide, is highly neuroprotective in a focal model of ischemic stroke. Nuclear magnetic resonance structural studies reveal that Hi1a comprises two homologous inhibitor cystine knot domains separated by a short, structurally well-defined linker. In contrast with known ASIC1a inhibitors, Hi1a incompletely inhibits ASIC1a activation in a pH-independent and slowly reversible manner. Whole-cell, macropatch, and single-channel electrophysiological recordings indicate that Hi1a binds to and stabilizes the closed state of the channel, thereby impeding the transition into a conducting state. Intracerebroventricular administration to rats of a single small dose of Hi1a (2 ng/kg) up to 8 h after stroke induction by occlusion of the middle cerebral artery markedly reduced infarct size, and this correlated with improved neurological and motor function, as well as with preservation of neuronal architecture. Thus, Hi1a is a powerful pharmacological tool for probing the role of ASIC1a in acid-mediated neuronal injury and various neurological disorders, and a promising lead for the development of therapeutics to protect the brain from ischemic injury.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/administração & dosagem , Canais Iônicos Sensíveis a Ácido/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Venenos de Aranha/administração & dosagem , Acidente Vascular Cerebral/tratamento farmacológico , Bloqueadores do Canal Iônico Sensível a Ácido/química , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Fármacos Neuroprotetores/farmacologia , Ratos , Venenos de Aranha/química , Venenos de Aranha/farmacologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/metabolismo
20.
Bioessays ; 38(6): 539-48, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27166747

RESUMO

Three-dimensional (3D) structures have been used to explore the evolution of proteins for decades, yet they have rarely been utilized to study the molecular evolution of peptides. Here, we highlight areas in which 3D structures can be particularly useful for studying the molecular evolution of peptide toxins. Although we focus our discussion on animal toxins, including one of the most widespread disulfide-rich peptide folds known, the inhibitor cystine knot, our conclusions should be widely applicable to studies of the evolution of disulfide-constrained peptides. We show that conserved 3D folds can be used to identify evolutionary links and test hypotheses regarding the evolutionary origin of peptides with extremely low sequence identity; construct accurate multiple sequence alignments; and better understand the evolutionary forces that drive the molecular evolution of peptides. Also watch the video abstract.


Assuntos
Evolução Molecular , Peptídeos/metabolismo , Toxinas Biológicas/metabolismo , Animais , Eucariotos/genética , Eucariotos/metabolismo , Humanos , Peptídeos/química , Peptídeos/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência , Toxinas Biológicas/química , Toxinas Biológicas/genética , Vírus/genética , Vírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA