Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 321(5): L837-L843, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34494468

RESUMO

Bronchoalveolar lavage (BAL) samples from Severe Asthma Research Program (SARP) patients display suppression of a module of genes involved in cAMP-signaling pathways (BALcAMP) correlating with severity, therapy, and macrophage constituency. We sought to establish if gene expression changes were specific to macrophages and compared gene expression trends from multiple sources. Datasets included single-cell RNA sequencing (scRNA-seq) from lung specimens including a fatal exacerbation of severe Asthma COPD Overlap Syndrome (ACOS) after intense therapy and controls without lung disease, bulk RNA sequencing from cultured macrophage (THP-1) cells after acute or prolonged ß-agonist exposure, SARP datasets, and data from the Immune Modulators of Severe Asthma (IMSA) cohort. THP monocytes suppressed BALcAMP network gene expression after prolonged relative to acute ß-agonist exposure, corroborating SARP observations. scRNA-seq from healthy and diseased lung tissue revealed 13 cell populations enriched for macrophages. In severe ACOS, BALcAMP gene network expression scores were decreased in many cell populations, most significantly for macrophage populations (P < 3.9e-111). Natural killer (NK) cells and type II alveolar epithelial cells displayed less robust network suppression (P < 9.2e-8). Alveolar macrophages displayed the most numerous individual genes affected and the highest amplitude of modulation. Key BALcAMP genes demonstrate significantly decreased expression in severe asthmatics in the IMSA cohort. We conclude that suppression of the BALcAMP gene module identified from SARP BAL samples is validated in the IMSA patient cohort with physiological parallels observed in a monocytic cell line and in a severe ACOS patient sample with effects preferentially localizing to macrophages.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Síndrome de Sobreposição da Doença Pulmonar Obstrutiva Crônica e Asma/tratamento farmacológico , Síndrome de Sobreposição da Doença Pulmonar Obstrutiva Crônica e Asma/patologia , Broncodilatadores/farmacologia , AMP Cíclico/biossíntese , Macrófagos Alveolares/imunologia , Líquido da Lavagem Broncoalveolar/química , Linhagem Celular , AMP Cíclico/genética , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Humanos , Células Matadoras Naturais/imunologia , Pulmão/patologia , Macrófagos Alveolares/metabolismo , Análise de Célula Única , Células THP-1
3.
J Allergy Clin Immunol ; 147(3): 894-909, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32795586

RESUMO

BACKGROUND: The Chr17q12-21.2 region is the strongest and most consistently associated region with asthma susceptibility. The functional genes or single nucleotide polymorphisms (SNPs) are not obvious due to linkage disequilibrium. OBJECTIVES: We sought to comprehensively investigate whole-genome sequence and RNA sequence from human bronchial epithelial cells to dissect functional genes/SNPs for asthma severity in the Severe Asthma Research Program. METHODS: Expression quantitative trait loci analysis (n = 114), correlation analysis (n = 156) of gene expression and asthma phenotypes, and pathway analysis were performed in bronchial epithelial cells and replicated. Genetic association for asthma severity (426 severe vs 531 nonsevere asthma) and longitudinal asthma exacerbations (n = 273) was performed. RESULTS: Multiple SNPs in gasdermin B (GSDMB) associated with asthma severity (odds ratio, >1.25) and longitudinal asthma exacerbations (P < .05). Expression quantitative trait loci analyses identified multiple SNPs associated with expression levels of post-GPI attachment to proteins 3, GSDMB, or gasdermin A (3.1 × 10-9 

Assuntos
Asma/genética , Cromossomos Humanos Par 17/genética , Genótipo , Proteínas de Neoplasias/genética , Mucosa Respiratória/fisiologia , Adulto , Progressão da Doença , Estudos de Associação Genética , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Análise de Sequência de RNA , Índice de Gravidade de Doença , Sequenciamento Completo do Genoma
4.
Am J Respir Crit Care Med ; 200(7): 837-856, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31161938

RESUMO

Rationale: Gene expression of BAL cells, which samples the cellular milieu within the lower respiratory tract, has not been well studied in severe asthma.Objectives: To identify new biomolecular mechanisms underlying severe asthma by an unbiased, detailed interrogation of global gene expression.Methods: BAL cell expression was profiled in 154 asthma and control subjects. Of these participants, 100 had accompanying airway epithelial cell gene expression. BAL cell expression profiles were related to participant (age, sex, race, and medication) and sample traits (cell proportions), and then severity-related gene expression determined by correlating transcripts and coexpression networks to lung function, emergency department visits or hospitalizations in the last year, medication use, and quality-of-life scores.Measurements and Main Results: Age, sex, race, cell proportions, and medications strongly influenced BAL cell gene expression, but leading severity-related genes could be determined by carefully identifying and accounting for these influences. A BAL cell expression network enriched for cAMP signaling components most differentiated subjects with severe asthma from other subjects. Subsequently, an in vitro cellular model showed this phenomenon was likely caused by a robust upregulation in cAMP-related expression in nonsevere and ß-agonist-naive subjects given a ß-agonist before cell collection. Interestingly, ELISAs performed on BAL lysates showed protein levels may partly disagree with expression changes.Conclusions: Gene expression in BAL cells is influenced by factors seldomly considered. Notably, ß-agonist exposure likely had a strong and immediate impact on cellular gene expression, which may not translate to important disease mechanisms or necessarily match protein levels. Leading severity-related genes were discovered in an unbiased, system-wide analysis, revealing new targets that map to asthma susceptibility loci.


Assuntos
Asma/genética , Líquido da Lavagem Broncoalveolar/citologia , Expressão Gênica/genética , Agonistas Adrenérgicos beta/farmacologia , Adulto , Asma/metabolismo , Estudos de Casos e Controles , AMP Cíclico/metabolismo , Eosinófilos/metabolismo , Células Epiteliais/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Técnicas In Vitro , Linfócitos/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Neutrófilos/metabolismo , Análise de Sequência de RNA , Índice de Gravidade de Doença , Transdução de Sinais/genética , Células THP-1/metabolismo
5.
JCI Insight ; 4(5)2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30730306

RESUMO

Although type-2-induced (T2-induced) epithelial dysfunction is likely to profoundly alter epithelial differentiation and repair in asthma, the mechanisms for these effects are poorly understood. A role for specific mucins, heavily N-glycosylated epithelial glycoproteins, in orchestrating epithelial cell fate in response to T2 stimuli has not previously been investigated. Levels of a sialylated MUC4ß isoform were found to be increased in airway specimens from asthmatic patients in association with T2 inflammation. We hypothesized that IL-13 would increase sialylation of MUC4ß, thereby altering its function and that the ß-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) would regulate the sialylation. Using human biologic specimens and cultured primary human airway epithelial cells (HAECs),we demonstrated that IL-13 increases ST6GAL1-mediated sialylation of MUC4ß and that both were increased in asthma, particularly in sputum supernatant and/or fresh isolated HAECs with elevated T2 biomarkers. ST6GAL1-induced sialylation of MUC4ß altered its lectin binding and secretion. Both ST6GAL1 and MUC4ß inhibited epithelial cell proliferation while promoting goblet cell differentiation. These in vivo and in vitro data provide strong evidence for a critical role for ST6GAL1-induced sialylation of MUC4ß in epithelial dysfunction associated with T2-high asthma, thereby identifying specific sialylation pathways as potential targets in asthma.


Assuntos
Antígenos CD/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Inflamação/metabolismo , Mucina-4/metabolismo , Sialiltransferases/metabolismo , Células Th2/imunologia , Adolescente , Adulto , Idoso , Antígenos CD/genética , Antígenos CD/farmacologia , Asma/imunologia , Linhagem Celular , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Interleucina-13 , Pulmão , Masculino , Pessoa de Meia-Idade , Mucina-4/genética , Isoformas de Proteínas , Sialiltransferases/genética , Sialiltransferases/farmacologia , Células Th2/efeitos dos fármacos , Transcriptoma , Adulto Jovem
6.
J Allergy Clin Immunol ; 143(6): 2075-2085.e10, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30639343

RESUMO

BACKGROUND: Genetic and genomic data increasingly point to the airway epithelium as critical to asthma pathogenesis. Epithelial growth factor (EGF) family members play a fundamental role in epithelial differentiation, proliferation, and repair. Although expression of erythroblastosis oncogene B2 (ErbB2) mRNA, an EGF family receptor, was reported to be lower in asthmatic patients, little is understood about its functional role. OBJECTIVE: We sought to determine whether decreased ErbB2 activation in freshly isolated human airway epithelial cells (HAECs) from asthmatic patients associated with impaired wound closure in vitro. METHODS: An in vitro scratch-wound model of air-liquid interface cultured and freshly isolated HAECs were compared between HAECs from healthy control subjects (HCs) and asthmatic patients in relation to ErbB2. RESULTS: Freshly brushed HAECs from asthmatic patients had impaired ErbB2 activation compared with those from HCs. In an in vitro scratch-wound model, HAECs from asthmatic patients showed delayed wound closure compared with HAECs from HCs. Cell proliferation, as assessed based on [3H] thymidine incorporation after wounding, and expression or activation of ErbB2 and cyclin D1 at the leading edge of the wound were lower in HAECs from asthmatic patients and HCs. A selective ErbB2 tyrosine kinase inhibitor, mubritinib, impaired wound closure and decreased cyclin D1 expression in healthy HAECs, with less effect on cells from asthmatic patients, supporting diminished activity in asthmatic patients. CONCLUSION: These results implicate a primary defect in the ErbB2 pathway as constraining epithelial repair processes in asthmatic patients. Restoration of homeostatic ErbB2 function should be considered a novel asthma therapeutic target.


Assuntos
Asma/imunologia , Células Epiteliais/imunologia , Receptor ErbB-2/imunologia , Adulto , Asma/patologia , Células Cultivadas , Células Epiteliais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cicatrização , Adulto Jovem
8.
Ann Allergy Asthma Immunol ; 118(5): 597-602, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28477789

RESUMO

BACKGROUND: Aspirin-exacerbated respiratory disease is characterized by asthma, chronic rhinosinusitis, nasal polyposis, and sensitivity to aspirin and other nonsteroidal anti-inflammatory drugs. Confirmation of the diagnosis requires provocation challenge with resulting upper and/or lower airways reactivity. Currently, determination of a positive challenge result is based solely on clinical judgment that synthesizes subjective symptoms and objective measures, as a concomitant increase in nasal or bronchial airways resistance is measured in only half of patients. OBJECTIVE: To describe a quantitative scoring system, based on symptoms typically reported during provocation challenge, used to identify a positive challenge result. METHODS: A total of 115 patients were asked to record 10 symptoms, rated on a scale from 1 (mild) to 10 (most severe), at regular intervals during intranasal ketorolac with modified oral aspirin challenge performed in our office. Composite scores, a simple sum of all individual scores, were calculated at each time point and compared with baseline, prechallenge values. RESULTS: One hundred of the 115 patients were determined to have a positive challenge result. A statistically significant difference in composite scores was observed in reactors vs nonreactors. All nonreactors recorded an increase in composite score of less than 5, whereas 69% of reactors recorded an increase of 5 or more. CONCLUSION: Our 10-symptom composite score provides a quantitative and comparable measure of symptoms that typically present during a challenge with a positive result. Although an external validation is needed to confirm its diagnostic performance characteristics, a change in composite score of 5 or more appears to be specific to reactors.


Assuntos
Aspirina/efeitos adversos , Hipersensibilidade a Drogas/diagnóstico , Hipersensibilidade a Drogas/imunologia , Fenótipo , Hipersensibilidade Respiratória/diagnóstico , Hipersensibilidade Respiratória/imunologia , Adulto , Idoso , Feminino , Humanos , Imunização , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Masculino , Pessoa de Meia-Idade , Testes de Provocação Nasal , Testes de Função Respiratória , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Adulto Jovem
9.
Am J Respir Crit Care Med ; 190(12): 1363-72, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25338189

RESUMO

RATIONALE: Although asthma is recognized as a heterogeneous disease associated with clinical phenotypes, the molecular basis of these phenotypes remains poorly understood. Although genomic studies have successfully broadened our understanding in diseases such as cancer, they have not been widely used in asthma studies. OBJECTIVES: To link gene expression patterns to clinical asthma phenotypes. METHODS: We used a microarray platform to analyze bronchial airway epithelial cell gene expression in relation to the asthma biomarker fractional exhaled nitric oxide (FeNO) in 155 subjects with asthma and healthy control subjects from the Severe Asthma Research Program (SARP). MEASUREMENTS AND MAIN RESULTS: We first identified a diverse set of 549 genes whose expression correlated with FeNO. We used k-means to cluster the patient samples according to the expression of these genes, identifying five asthma clusters/phenotypes with distinct clinical, physiological, cellular, and gene transcription characteristics-termed "subject clusters" (SCs). To then investigate differences in gene expression between SCs, a total of 1,384 genes were identified that highly differentiated the SCs at an unadjusted P value < 10(-6). Hierarchical clustering of these 1,384 genes identified nine gene clusters or "biclusters," whose coexpression suggested biological characteristics unique to each SC. Although genes related to type 2 inflammation were present, novel pathways, including those related to neuronal function, WNT pathways, and actin cytoskeleton, were noted. CONCLUSIONS: These findings show that bronchial epithelial cell gene expression, as related to the asthma biomarker FeNO, can identify distinct asthma phenotypes, while also suggesting the presence of underlying novel gene pathways relevant to these phenotypes.


Assuntos
Asma/genética , Expressão Gênica/genética , Óxido Nítrico/metabolismo , Adulto , Asma/metabolismo , Biomarcadores , Brônquios/citologia , Brônquios/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Família Multigênica/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA