Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 6(9): 4765-73, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24658160

RESUMO

There is substantial clinical interest in synthetic platelet analogs for potential application in transfusion medicine. To this end, our research is focused on self-assembled peptide-lipid nanoconstructs that can undergo injury site-selective adhesion and subsequently promote site-directed active platelet aggregation, thus mimicking platelet's primary hemostatic actions. For injury site-selective adhesion, we have utilized a coagulation factor FVIII-derived VWF-binding peptide (VBP). FVIII binds to VWF's D'-D3 domain while natural platelet GPIbα binds to VWF's A1 domain. Therefore, we hypothesized that the VBP-decorated nanoconstructs will adhere to VWF without mutual competition with natural platelets. We further hypothesized that the adherent VBP-decorated constructs can enhance platelet aggregation when co-decorated with a fibrinogen-mimetic peptide (FMP). To test these hypotheses, we used glycocalicin to selectively block VWF's A1 domain and, using fluorescence microscopy, studied the binding of fluorescently labeled VBP-decorated nanoconstructs versus platelets to ristocetin-treated VWF. Subsequently, we co-decorated the nanoconstructs with VBP and FMP and incubated them with human platelets to study construct-mediated enhancement of platelet aggregation. Decoration with VBP resulted in substantial construct adhesion to ristocetin-treated VWF even if the A1-domain was blocked by glycocalicin. In comparison, such A1-blocking resulted in significant reduction of platelet adhesion. Without A1-blocking, the VBP-decorated constructs and natural platelets could adhere to VWF concomitantly. Furthermore, the constructs co-decorated with VBP and FMP enhanced active platelet aggregation. The results indicate significant promise in utilizing the FVIII-derived VBP in developing synthetic platelet analogs that do not interfere with VWF-binding of natural platelets but allow site-directed enhancement of platelet aggregation when combined with FMP.


Assuntos
Plaquetas/metabolismo , Fator VIII/química , Nanoestruturas/química , Peptídeos/metabolismo , Fator de von Willebrand/metabolismo , Humanos , Lipossomos/química , Lipossomos/metabolismo , Microscopia de Fluorescência , Peptídeos/química , Adesividade Plaquetária , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Ristocetina/química , Fator de von Willebrand/química
2.
Nanomedicine (Lond) ; 8(10): 1709-27, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24074391

RESUMO

Platelets are megakaryocyte-derived anucleated cells found in the blood. They are mainly responsible for rendering hemostasis or clotting to prevent bleeding complications. Decreased platelet numbers or deficiencies in platelet functions can lead to various acute or chronic bleeding conditions and hemorrhage. On the other hand, dysregulated hyperactivity of the clotting process can lead to thrombosis and vascular occlusion. There is significant evidence that beyond hemostasis and thrombosis, platelets play crucial mechanistic roles in other disease scenarios such as inflammation, immune response and cancer metastasis by mediating several cell-cell and cell-matrix interactions, as well as aiding the disease microenvironment via secretion of multiple soluble factors. Therefore, elucidating these mechanistic functions of platelets can provide unique avenues for developing platelet-inspired nanomedicine strategies targeted to these diseases. To this end, the current review provides detailed mechanistic insight into platelets' disease-relevant functions and discusses how these mechanisms can be utilized to engineer targeted nanomedicine systems.


Assuntos
Plaquetas/patologia , Imunidade Inata , Inflamação/patologia , Metástase Neoplásica/patologia , Plaquetas/citologia , Plaquetas/metabolismo , Hemorragia/patologia , Hemorragia/terapia , Humanos , Inflamação/etiologia , Inflamação/terapia , Nanomedicina , Metástase Neoplásica/terapia
3.
Biomacromolecules ; 14(3): 910-9, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23360320

RESUMO

There is compelling evidence that, beyond their traditional role in hemostasis and thrombosis, platelets play a significant role in mediating hematologic mechanisms of tumor metastasis by directly and indirectly interacting with pro-metastatic cancer cells. With this rationale, we hypothesized that platelets can be an effective paradigm to develop nanomedicine platforms that utilize platelet-mimetic interaction mechanisms for targeted diagnosis and therapy of metastatic cancer cells. Here we report on our investigation of the development of nanoconstructs that interact with metastatic cancer cells via platelet-mimetic heteromultivalent ligand-receptor pathways. For our studies, pro-metastatic human breast cancer cell line MDA-MB-231 was studied for its surface expression of platelet-interactive receptors, in comparison to another low-metastatic human breast cancer cell line, MCF-7. Certain platelet-interactive receptors were found to be significantly overexpressed on the MDA-MB-231 cells, and these cells showed significantly enhanced binding interactions with active platelets compared to MCF-7 cells. Based upon these observations, two specific receptor interactions were selected, and corresponding ligands were engineered onto the surface of liposomes as model nanoconstructs, to enable platelet-mimetic binding to the cancer cells. Our model platelet-mimetic liposomal constructs showed enhanced targeting and attachment of MDA-MB-231 cells compared to the MCF-7 cells. These results demonstrate the promise of utilizing platelet-mimetic constructs in modifying nanovehicle constructs for metastasis-targeted drug as well as modifying surfaces for ex-vivo cell enrichment diagnostic technologies.


Assuntos
Materiais Biomiméticos/farmacologia , Plaquetas/metabolismo , Neoplasias da Mama/metabolismo , Nanomedicina/métodos , Antineoplásicos/farmacologia , Daunorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Lipossomos , Células MCF-7 , Rodaminas/farmacologia
4.
Biomaterials ; 34(2): 526-41, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23092864

RESUMO

Platelet transfusion is routinely used for treating bleeding complications in patients with hematologic or oncologic clotting disorders, chemo/radiotherapy-induced myelosuppression, trauma and surgery. Currently, these transfusions mostly use allogeneic platelet concentrates, while products like lyophilized platelets, cold-stored platelets and infusible platelet membranes are under investigation. These natural platelet-based products pose considerable risks of contamination, resulting in short shelf-life (3-5 days). Recent advances in pathogen reduction technologies have increased shelf-life to ~7 days. Furthermore, natural platelets are short in supply and also cause several biological side effects. Hence, there is significant clinical interest in platelet-mimetic synthetic analogs that can allow long storage-life and minimum side effects. Accordingly, several designs have been studied which decorate synthetic particles with motifs that promote platelet-mimetic adhesion or aggregation. Recent refinement in this design involves combining the adhesion and aggregation functionalities on a single particle platform. Further refinement is being focused on constructing particles that also mimic natural platelet's shape, size and elasticity, to influence margination and wall-interaction. The optimum design of a synthetic platelet analog would require efficient integration of platelet's physico-mechanical properties and biological functionalities. We present a comprehensive review of these approaches and provide our opinion regarding the future directions of this research.


Assuntos
Células Artificiais/química , Células Artificiais/citologia , Biomimética/métodos , Plaquetas/química , Plaquetas/citologia , Animais , Materiais Biomiméticos/química , Hemostasia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA