Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 14(1): 173, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403181

RESUMO

BACKGROUND: Polyploid cells can be found in a wide evolutionary spectrum of organisms. These cells are assumed to be involved in tissue regeneration and resistance to stressors. Although the appearance of large multinucleated cells (LMCs) in long-term culture of bone marrow (BM) mesenchymal cells has been reported, the presence and characteristics of such cells in native BM and their putative role in BM reconstitution following injury have not been fully investigated. METHODS: BM-derived LMCs were explored by time-lapse microscopy from the first hours post-isolation to assess their colony formation and plasticity. In addition, sub-lethally irradiated mice were killed every other day for four weeks to investigate the histopathological processes during BM regeneration. Moreover, LMCs from GFP transgenic mice were transplanted to BM-ablated recipients to evaluate their contribution to tissue reconstruction. RESULTS: BM-isolated LMCs produced mononucleated cells with characteristics of mesenchymal stromal cells. Time-series inspections of BM sections following irradiation revealed that LMCs are highly resistant to injury and originate mononucleated cells which reconstitute the tissue. The regeneration process was synchronized with a transient augmentation of adipocytes suggesting their contribution to tissue repair. Additionally, LMCs were found to be adiponectin positive linking the observations on multinucleation and adipogenesis to BM regeneration. Notably, transplantation of LMCs to myeloablated recipients could reconstitute both the hematopoietic system and BM stroma. CONCLUSIONS: A population of resistant multinucleated cells reside in the BM that serves as the common origin of stromal and hematopoietic lineages with a key role in tissue regeneration. Furthermore, this study underscores the contribution of adipocytes in BM reconstruction.


Assuntos
Transplante de Medula Óssea , Medula Óssea , Camundongos , Animais , Adiponectina , Hematopoese/efeitos da radiação , Células da Medula Óssea , Camundongos Transgênicos , Camundongos Endogâmicos C57BL
2.
bioRxiv ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461690

RESUMO

Oncofetal transcription factor SALL4 is essential for cancer cell survival. 1-5 Recently, several groups reported that immunomodulatory imide drugs (IMiDs) could degrade SALL4 in a proteasome-dependent manner. 6,7 Intriguingly, we observed that IMiDs had no effect on SALL4-positive cancer cells. Further studies demonstrated that IMiDs could only degrade SALL4A, one of the SALL4 isoforms. This finding raises the possibility that SALL4B, the isoform not affected by IMiDs, may be essential for SALL4-mediated cancer cell survival. SALL4B knockdown led to an increase in apoptosis and inhibition of cancer cell growth. SALL4B gain-of-function alone led to liver tumor formation in mice. Our observation that protein degraders can possess isoform-specific effects exemplifies the importance of delineating drug action and oncogenesis at the isoform level to develop more effective cancer therapeutics.

3.
Adv Biomed Res ; 12: 77, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37200756

RESUMO

Background: Tumor recurrence as one of the main causes of cancer death is a big barrier to cancer complete treatment. Various studies denote the possible role of therapeutics in tumor relapse. Cisplatin as one of the generally used chemotherapy agents is supposed to be the source of therapy resistance through formation of polyploid giant cancer cells (PGCCs). Nevertheless, the mechanisms by which PGCCs promote tumor relapse are not fully understood. Materials and Methods: In this study, we performed experimental and bioinformatic investigations to recognize the mechanisms related to cisplatin resistance. A2780 and SCOV-3 cell lines were treated with cisplatin for 72 hours and were evaluated for their morphology by fluorescent microscopy and DNA content analysis. Furthermore, a microarray dataset of cisplatin-resistant ovarian cancer cells was re-analyzed to determine the significantly altered genes and signaling pathways. Results: Although cisplatin led to death of considerable fraction of cells in both cell lines, a significant number of survived cells became polyploid. On the other hand, our high throughput analysis determined significant change in expression of 1930 genes which mainly related to gene regulatory mechanisms and nuclear processes. Besides, mTOR, hypoxia, Hippo, and 14-3-3 signaling pathways previously shown to have role in PGCCs were determined. Conclusion: Taken together, results of this study demonstrated some key biological mechanisms related to cisplatin-resistant polyploid cancer cells.

4.
Sci Rep ; 13(1): 419, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624105

RESUMO

Although polyploid giant cancer cells (PGCCs) are known as a key source of failure of current therapies, sufficient drugs to target these cells are not yet introduced. Considering the similarities of polyploid cells in regeneration and cancer, we hypothesized that zoledronic acid (ZA), an osteoclast-targeting agent, might be used to eliminate PGCCs. The 5637-bladder cancer cell line was treated with various doses of cisplatin to enrich polyploid cells and the efficacy of different concentrations of ZA in reducing this population was assessed. The metabolic profile of PGCCs was investigated with gas chromatography-mass spectrometry. Lipid profiles, mitochondrial density, and ROS content were also measured to assess the response of the cells to ZA. Cancer cells surviving after three days of exposure with 6 µM cisplatin were mainly polyploid. These cells demonstrated special morphological features such as fusion with diploid or other polyploid cells and originated in daughter cells through budding. ZA could substantially eradicate PGCCs with the maximal effect observed with 50 µM which resulted in the drop of PGCC fraction from 60 ± 7.5 to 19 ± 1.7%. Enriched PGCCs after cisplatin-treatment demonstrated a drastic metabolic shift compared to untreated cancer cells with an augmentation of lipids. Further assays confirmed the high content of lipid droplets and cholesterol in these cells which were reduced after ZA administration. Additionally, the mitochondrial density and ROS increased in PGCCs both of which declined in response to ZA. Taken together, we propose that ZA is a potent inhibitor of PGCCs which alters the metabolism of PGCCs. Although this drug has been successfully exploited as adjuvant therapy for some malignancies, the current evidence on its effects on PGCCs justifies further trials to assess its potency for improving the success of current therapies for tackling tumor resistance and relapse.


Assuntos
Cisplatino , Neoplasias , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Cisplatino/metabolismo , Ácido Zoledrônico/farmacologia , Ácido Zoledrônico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Células Gigantes/metabolismo , Poliploidia , Neoplasias/patologia
5.
Cells ; 11(16)2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-36010677

RESUMO

Spalt-Like Transcription Factor 4 (SALL4) is a critical factor for self-renewal ability and pluripotency of stem cells. On the other hand, various reports show tight relation of SALL4 to cancer occurrence and metastasis. SALL4 exerts its effects not only by inducing gene expression but also repressing a large cluster of genes through interaction with various epigenetic modifiers. Due to high expression of SALL4 in cancer cells and its silence in almost all adult tissues, it is an ideal target for cancer therapy. However, targeting SALL4 meets various challenges. SALL4 is a transcription factor and designing appropriate drug to inhibit this intra-nucleus component is challenging. On the other hand, due to lack of our knowledge on structure of the protein and the suitable active sites, it becomes more difficult to reach the appropriate drugs against SALL4. In this review, we have focused on approaches applied yet to target this oncogene and discuss the potential of degrader systems as new therapeutics to target oncogenes.


Assuntos
Neoplasias , Fatores de Transcrição , Adulto , Regulação da Expressão Gênica , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
6.
Biochim Biophys Acta Rev Cancer ; 1874(2): 188408, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32827584

RESUMO

In spite of significant advancements of therapies for initial eradication of cancers, tumor relapse remains a major challenge. It is for a long time known that polyploid malignant cells are a main source of resistance against chemotherapy and irradiation. However, therapeutic approaches targeting these cells have not been appropriately pursued which could partly be due to the shortage of knowledge on the molecular biology of cell polyploidy. On the other hand, there is a rising trend to appreciate polyploid/ multinucleated cells as key players in tissue regeneration. In this review, we suggest an analogy between the functions of polyploid cells in normal and malignant tissues and discuss the idea that cell polyploidy is an evolutionary conserved source of tissue regeneration also exploited by cancers as a survival factor. In addition, polyploid cells are highlighted as a promising therapeutic target to overcome drug resistance and relapse.


Assuntos
Neoplasias/genética , Poliploidia , Animais , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Evolução Molecular , Humanos , Regeneração
7.
PLoS One ; 15(5): e0232965, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32384110

RESUMO

Fibroblasts as key components of tumor microenvironment show different features in the interaction with cancer cells. Although, Normal fibroblasts demonstrate anti-tumor effects, cancer associated fibroblasts are principal participant in tumor growth and invasion. The ambiguity of fibroblasts function can be regarded as two heads of its behavioral spectrum and can be subjected for mathematical modeling to identify their switching behavior. In this research, an agent-based model of mutual interactions between fibroblast and cancer cell was created. The proposed model is based on nonlinear differential equations which describes biochemical reactions of the main factors involved in fibroblasts and cancer cells communication. Also, most of the model parameters are estimated using hybrid unscented Kalman filter. The interactions between two cell types are illustrated by the dynamic modeling of TGFß and LIF pathways as well as their crosstalk. Using analytical and computational approaches, reciprocal effects of cancer cells and fibroblasts are constructed and the role of signaling molecules in tumor progression or prevention are determined. Finally, the model is validated using a set of experimental data. The proposed dynamic modeling might be useful for designing more efficient therapies in cancer metastasis treatment and prevention.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Modelos Biológicos , Microambiente Tumoral/fisiologia , Células A549 , Comunicação Celular/fisiologia , Quimiocina CXCL12/metabolismo , Simulação por Computador , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fator Inibidor de Leucemia/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Dinâmica não Linear , Transdução de Sinais/fisiologia , Análise de Sistemas , Fator de Crescimento Transformador beta/metabolismo
8.
Biosystems ; 189: 104099, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31935434

RESUMO

Many biological processes show switching behaviors in response to parameter changes. Although numerous surveys have been conducted on bifurcations in biological systems, they commonly focus on over-represented parts of signaling cascades, known as motifs, ignoring the multi-motif structure of biological systems and the communication links between these building blocks. In this paper, a method is proposed which partitions molecular interactions to modules based on a control theory point of view. The modules are defined so that downstream effect of one module is a regulator for its neighboring modules. Communication links between these modules are then considered as bifurcation parameters to reveal change in steady state status of each module. As a case-study, we generated a molecular interaction map of signaling molecules during the development of mammalian embryonic kidneys. The whole system was divided to modules, where each module is defined as a group of interacting molecules that result in expression of a vital downstream regulator. Bifurcation analysis was then performed on these modules by considering the communication signals as bifurcation parameters. Two-parameter bifurcation analysis was then performed to assess the effects of simultaneous input signals on each module behavior. In the case where a module had more than two inputs, a series of two parameter bifurcation diagrams were calculated each corresponding to different values of the third parameter. We detected multi-stability for RET protein as a key regulator for fate determination. This finding is in agreement with experimental data indicating that ureteric bud cells are bi-potential, able to form tip or trunk of the bud based on their RET activity level. Our findings also indicate that Glial cell-derived neurotrophic factor (GDNF), a known potent regulator of kidney development, exerts its fate-determination function on cell placement through destruction of saddle node bifurcation points in RET steady states and confining RET activity level to high activity in ureteric bud tip. In conclusion, embryonic cells usually show a huge decision making potential; the proposed modular modeling of the system in association with bifurcation analysis provides a quantitative holistic view of organ development.


Assuntos
Desenvolvimento Embrionário/fisiologia , Rim/embriologia , Rim/fisiologia , Biologia de Sistemas/métodos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Humanos , Morfogênese/fisiologia , Proteínas Proto-Oncogênicas c-ret/fisiologia
9.
Sci Rep ; 9(1): 12764, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31484958

RESUMO

Macrophages play a key role in tissue regeneration by polarizing to different destinies and generating various phenotypes. Recognizing the underlying mechanisms is critical in designing therapeutic procedures targeting macrophage fate determination. Here, to investigate the macrophage polarization, a nonlinear mathematical model is proposed in which the effect of IL4, IFNγ and LPS, as external stimuli, on STAT1, STAT6, and NFκB is studied using bifurcation analysis. The existence of saddle-node bifurcations in these internal key regulators allows different combinations of steady state levels which are attributable to different fates. Therefore, we propose dynamic bifurcation as a crucial built-in mechanism of macrophage polarization. Next, in order to investigate the polarization of a population of macrophages, bifurcation analysis is employed aligned with agent-based approach and a two-layer model is proposed in which the information from single cells is exploited to model the behavior in tissue level. Also, in this model, a partial differential equation describes the diffusion of secreted cytokines in the medium. Finally, the model was validated against a set of experimental data. Taken together, we have here developed a cell and tissue level model of macrophage polarization behavior which can be used for designing therapeutic interventions.


Assuntos
Ativação de Macrófagos , Macrófagos/metabolismo , Modelos Biológicos , NF-kappa B/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT6/metabolismo , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA