Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4455, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488113

RESUMO

Bone transport is a surgery-driven procedure for the treatment of large bone defects. However, challenging complications include prolonged consolidation, docking site nonunion and pin tract infection. Here, we develop an osteoinductive and biodegradable intramedullary implant by a hybrid tissue engineering construct technique to enable sustained delivery of bone morphogenetic protein-2 as an adjunctive therapy. In a male rat bone transport model, the eluting bone morphogenetic protein-2 from the implants accelerates bone formation and remodeling, leading to early bony fusion as shown by imaging, mechanical testing, histological analysis, and microarray assays. Moreover, no pin tract infection but tight osseointegration are observed. In contrast, conventional treatments show higher proportion of docking site nonunion and pin tract infection. The findings of this study demonstrate that the novel intramedullary implant holds great promise for advancing bone transport techniques by promoting bone regeneration and reducing complications in the treatment of bone defects.


Assuntos
Implantes Absorvíveis , Osteogênese , Masculino , Animais , Ratos , Bioensaio , Regeneração Óssea , Osseointegração
2.
J Biomed Mater Res A ; 111(8): 1120-1134, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36606330

RESUMO

Core decompression (CD) with mesenchymal stromal cells (MSCs) is an effective therapy for early-stage osteonecrosis of the femoral head (ONFH). Preconditioning of MSCs, using inflammatory mediators, is widely used in immunology and various cell therapies. We developed a three-dimensional printed functionally graded scaffold (FGS), made of ß-TCP and PCL, for cell delivery at a specific location. The present study examined the efficacy of CD treatments with genetically modified (GM) MSCs over-expressing PDGF-BB (PDGF-MSCs) or GM MSCs co-over-expressing IL-4 and PDGF-BB and preconditioned for three days of exposure to lipopolysaccharide and tumor necrosis factor-alpha (IL-4-PDGF-pMSCs) using the FGS for treating steroid-induced ONFH in rabbits. We compared CD without cell-therapy, with IL-4-PDGF-pMSCs alone, and with FGS loaded with PDGF-MSCs or IL-4-PDGF-pMSCs. For the area inside the CD, the bone volume in the CD alone was higher than in both FGS groups. The IL-4-PDGF-pMSCs alone and FGS + PDGF-MSCs reduced the occurrence of empty lacunae and improved osteoclastogenesis. There was no significant difference in angiogenesis among the four groups. The combined effect of GM MSCs or pMSCs and the FGS was not superior to the effect of each alone. To establish an important adjunctive therapy for CD for early ONFH in the future, it is necessary and essential to develop an FGS that delivers biologics appropriately and provides structural and mechanical support.


Assuntos
Células-Tronco Mesenquimais , Osteonecrose , Animais , Coelhos , Cabeça do Fêmur/patologia , Cabeça do Fêmur/cirurgia , Becaplermina , Interleucina-4/farmacologia , Regeneração Óssea , Células-Tronco Mesenquimais/patologia , Corticosteroides/farmacologia , Osteonecrose/induzido quimicamente , Osteonecrose/terapia , Osteonecrose/patologia
3.
Stem Cell Res Ther ; 12(1): 503, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526115

RESUMO

BACKGROUND: Approximately one third of patients undergoing core decompression (CD) for early-stage osteonecrosis of the femoral head (ONFH) experience progression of the disease, and subsequently require total hip arthroplasty (THA). Thus, identifying adjunctive treatments to optimize bone regeneration during CD is an unmet clinical need. Platelet-derived growth factor (PDGF)-BB plays a central role in cell growth and differentiation. The aim of this study was to characterize mesenchymal stromal cells (MSCs) that were genetically modified to overexpress PDGF-BB (PDGF-BB-MSCs) in vitro and evaluate their therapeutic effect when injected into the bone tunnel at the time of CD in an in vivo rabbit model of steroid-associated ONFH. METHODS: In vitro studies: Rabbit MSCs were transduced with a lentivirus vector carrying the human PDGF-BB gene under the control of either the cytomegalovirus (CMV) or phosphoglycerate (PGK) promoter. The proliferative rate, PDGF-BB expression level, and osteogenic differentiation capacity of unmodified MSCs, CMV-PDGF-BB-MSCs, and PGK-PDGF-BB-MSCs were assessed. In vivo studies: Twenty-four male New Zealand white rabbits received an intramuscular (IM) injection of methylprednisolone 20 mg/kg. Four weeks later, the rabbits were divided into four groups: the CD group, the hydrogel [HG, (a collagen-alginate mixture)] group, the MSC group, and the PGK-PDGF-BB-MSC group. Eight weeks later, the rabbits were sacrificed, their femurs were harvested, and microCT, mechanical testing, and histological analyses were performed. RESULTS: In vitro studies: PGK-PDGF-BB-MSCs proliferated more rapidly than unmodified MSCs (P < 0.001) and CMV-PDGF-BB-MSCs (P < 0.05) at days 3 and 7. CMV-PDGF-BB-MSCs demonstrated greater PDGF-BB expression than PGK-PDGF-BB-MSCs (P < 0.01). However, PGK-PDGF-BB-MSCs exhibited greater alkaline phosphatase staining at 14 days (P < 0.01), and osteogenic differentiation at 28 days (P = 0.07) than CMV-PDGF-BB-MSCs. In vivo: The PGK-PDGF-BB-MSC group had a trend towards greater bone mineral density (BMD) than the CD group (P = 0.074). The PGK-PDGF-BB-MSC group demonstrated significantly lower numbers of empty lacunae (P < 0.001), greater osteoclast density (P < 0.01), and greater angiogenesis (P < 0.01) than the other treatment groups. CONCLUSION: The use of PGK-PDGF-BB-MSCs as an adjunctive treatment with CD may reduce progression of osteonecrosis and enhance bone regeneration and angiogenesis in the treatment of early-stage ONFH.


Assuntos
Necrose da Cabeça do Fêmur , Células-Tronco Mesenquimais , Osteonecrose , Animais , Becaplermina , Descompressão , Cabeça do Fêmur , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/genética , Necrose da Cabeça do Fêmur/terapia , Humanos , Masculino , Osteogênese , Coelhos , Esteroides
4.
Biomaterials ; 275: 120972, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34186237

RESUMO

Cell-based therapy for augmentation of core decompression (CD) using mesenchymal stromal cells (MSCs) is a promising treatment for early stage osteonecrosis of the femoral head (ONFH). Recently, the therapeutic potential for immunomodulation of osteogenesis using preconditioned (with pro-inflammatory cytokines) MSCs (pMSCs), or by the timely resolution of inflammation using MSCs that over-express anti-inflammatory cytokines has been described. Here, pMSCs exposed to tumor necrosis factor-alpha and lipopolysaccharide for 3 days accelerated osteogenic differentiation in vitro. Furthermore, injection of pMSCs encapsulated with injectable hydrogels into the bone tunnel facilitated angiogenesis and osteogenesis in the femoral head in vivo, using rabbit bone marrow-derived MSCs and a model of corticosteroid-associated ONFH in rabbits. In contrast, in vitro and in vivo studies demonstrated that genetically-modified MSCs that over-express IL4 (IL4-MSCs), established by using a lentiviral vector carrying the rabbit IL4 gene under the cytomegalovirus promoter, accelerated proliferation of MSCs and decreased the percentage of empty lacunae in the femoral head. Therefore, adjunctive cell-based therapy of CD using pMSCs and IL4-MSCs may hold promise to heal osteonecrotic lesions in the early stage ONFH. These interventions must be applied in a temporally sensitive fashion, without interfering with the mandatory acute inflammatory phase of bone healing.


Assuntos
Corticosteroides/efeitos adversos , Necrose da Cabeça do Fêmur , Células-Tronco Mesenquimais , Animais , Medula Óssea , Cabeça do Fêmur , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/terapia , Interleucina-4 , Osteogênese , Coelhos
5.
Biomacromolecules ; 20(8): 2973-2988, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31282651

RESUMO

The objective of this work was to engineer self-assembled nanoparticles (NPs) for on-demand release of bone morphogenetic protein-2 (BMP2) and vascular endothelial growth factor (VEGF) in response to enzymes secreted by the migrating human mesenchymal stem cells (hMSCs) and human endothelial colony forming cells (ECFCs) to induce osteogenesis and vasculogenesis. Gene expression profiling experiments revealed that hMSCs and ECFCs, encapsulated in osteogenic/vasculogenic hydrogels, expressed considerable levels of plasminogen, urokinase plasminogen activator and its receptor uPAR, and tissue plasminogen activator. Therefore, the plasmin-cleavable lysine-phenylalanine-lysine-threonine (KFKT) was used to generate enzymatically cleavable NPs. The acetyl-terminated, self-assembling peptide glycine-(phenylalanine)3GFFF-ac and the plasmin-cleavable GGKFKTGG were reacted with the cysteine-terminated CGGK(Fmoc/MTT) peptide through the MTT and Fmoc termini, respectively. The difunctional peptide was conjugated to polyethylene glycol diacrylate (PEGDA) with molecular weights (MW) ranging from 0.5 to 7.5 kDa, and the chain ends of the PEG-peptide conjugate were terminated with succinimide groups. After self-assembly in aqueous solution, BMP2 was grafted to the self-assembled, plasmin-cleavable PEG-based (PxSPCP) NPs for on-demand release. The NPs' stability in aqueous solution and that of the grafted BMP2 were strongly dependent on PEG MW. P2SPCP NPs showed high particle size stability, BMP2 grafting efficiency, grafted protein stability, and high extent of osteogenic differentiation of hMSCs. The localized and on-demand release of BMP2 from PxSPCP NPs coencapsulated with hMSCs in the linear polyethylene glycol-co-lactide acrylate patterned hydrogel with microchannels encapsulating hMSCs + ECFCs and VEGF-conjugated nanogels resulted in the highest extent of osteogenic and vasculogenic differentiation of the encapsulated cells compared to directly added BMP2/VEGF. The on-demand release of BMP2 from PxSPCP NPs not only enhances osteogenesis and vasculogenesis but also potentially reduces many undesired side effects of BMP2 therapy in bone regeneration.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular , Endotélio Vascular/citologia , Fibrinolisina/metabolismo , Células-Tronco Mesenquimais/citologia , Nanopartículas/metabolismo , Osteogênese , Proteína Morfogenética Óssea 2/química , Regeneração Óssea , Células Cultivadas , Endotélio Vascular/metabolismo , Humanos , Hidrogéis/química , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/química , Polietilenoglicóis/química , Ativador de Plasminogênio Tecidual/metabolismo , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Tissue Eng Part B Rev ; 25(4): 294-311, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30938269

RESUMO

IMPACT STATEMENT: Millions of people every year develop scars in response to skin injuries after surgery, trauma, or burns with significant undesired physical and psychological effects. This review provides an update on engineering strategies for scar-free wound healing and discusses the role of different cell types, growth factors, cytokines, and extracellular components in regenerative wound healing. The use of pro-regenerative matrices combined with engineered cells with less intrinsic potential for fibrogenesis is a promising strategy for achieving scar-free skin tissue regeneration.


Assuntos
Cicatriz/prevenção & controle , Regeneração , Medicina Regenerativa , Fenômenos Fisiológicos da Pele , Pele/lesões , Cicatrização , Animais , Humanos , Pele/patologia
7.
Tissue Eng Part A ; 25(3-4): 234-247, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30146939

RESUMO

IMPACT STATEMENT: The higher regenerative capacity of fetal articular cartilage compared with the adult is rooted in differences in cell density and matrix composition. We hypothesized that the zonal organization of articular cartilage can be engineered by encapsulation of mesenchymal stem cells in a single superficial zone-like matrix followed by sequential addition of zone-specific growth factors within the matrix, similar to the process of fetal cartilage development. The results demonstrate that the zonal organization of articular cartilage can potentially be regenerated using an injectable, monolayer cell-laden hydrogel with sequential release of growth factors.


Assuntos
Cartilagem Articular/química , Diferenciação Celular , Condrócitos/metabolismo , Condrogênese , Matriz Extracelular/química , Células-Tronco Mesenquimais/metabolismo , Cartilagem Articular/citologia , Cartilagem Articular/metabolismo , Condrócitos/citologia , Humanos , Células-Tronco Mesenquimais/citologia
8.
Methods Mol Biol ; 1612: 239-252, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28634948

RESUMO

Despite the advantages of three-dimensional (3D) hydrogels for cell culture over traditional 2D plates, their clinical application is limited by inability to recapitulate the micro-architecture of complex tissues. Micropatterning can be employed to modify the homogenous micro-architecture of hydrogels. Three techniques for cell encapsulation in 3D micropatterned gels are described. The photomask and micromold techniques are used for cell encapsulation in relatively shallow patterns like disks or short rectangles but due to the presence of PDMS mold, the resolution of micromold technique is potentially higher than the photomask. The microneedle technique is often used for cell encapsulation in relatively deep microchannels within any geometry.


Assuntos
Técnicas de Cultura de Células/instrumentação , Hidrogéis/química , Linhagem Celular Tumoral , Humanos
9.
Biomacromolecules ; 18(2): 398-412, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28000441

RESUMO

The objective of this work was to synthesize an injectable and photopolymerizable hydrogel based on keratin extracted from poultry feather for encapsulation and delivery of stem cells in tissue regeneration. Since feather keratin is rich in cysteine residue, allylation of sulfhydryl groups was used for functionalization of keratin. Keratin was extracted from feather barbs by reducing the disulfide bonds in cysteine residues to sulfhydryl groups (-SH). Next, the free thiol groups were converted to dehydroalanine (Dha) by oxidative elimination using O-(2,4,6-trimethylbenzenesulfonyl) hydroxylamine. Then, the Dha moieties were converted to s-allyl cysteine by reaction with allyl mercaptan to produce keratin allyl thioether (KeratATE) biopolymer. Human mesenchymal stem cell (hMSCs) were suspended in the aqueous solution of KeratATE, injected into a mold, and photopolymerized to generate a KeratATE hydrogel encapsulating hMSCs. The freeze-dried photo-cross-linked KeratATE hydrogels had a porous, interconnected, honeycomb microstructure with pore sizes in the 20-60 µm range. The compressive modulus of the hydrogels ranged from 1 to 8 kPa depending on KeratATE concentration. KeratATE hydrogels had <5% mass loss in collagenase solution after 21 days of incubation, whereas the mass loss was 15% in trypsin solution. Degradation of KeratATE hydrogel was strongly dependent on trypsin concentration but independent of collagenase. hMSCs proliferated and adopted an elongated spindle-shape morphology after seeding on KeratATE hydrogel. KeratATE hydrogel supported differentiation of the encapsulated hMSCs to the osteogenic and chondrogenic lineages to the same extent as those hMSCs encapsulated in gelatin methacryloyl hydrogel. The results suggest that keratin allyl thioether hydrogel with controllable degradation is a viable matrix for encapsulation and delivery of stem cells in tissue regeneration.


Assuntos
Diferenciação Celular , Condrogênese/fisiologia , Hidrogéis/química , Queratinas/química , Células-Tronco Mesenquimais/citologia , Osteogênese/fisiologia , Células Cultivadas , Reagentes de Ligações Cruzadas/farmacologia , Humanos , Luz , Células-Tronco Mesenquimais/fisiologia , Engenharia Tecidual
10.
Biomaterials ; 92: 57-70, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27038568

RESUMO

Current tissue engineering approaches to regeneration of articular cartilage rarely restore the tissue to its normal state because the generated tissue lacks the intricate zonal organization of the native cartilage. Zonal regeneration of articular cartilage is hampered by the lack of knowledge for the relation between physical, mechanical, and biomolecular cues and zone-specific chondrogenic differentiation of progenitor cells. This work investigated in 3D the effect of TGF-ß1, zone-specific growth factors, optimum matrix stiffness, and adding nanofibers on the expression of chondrogenic markers specific to the superficial, middle, and calcified zones of articular cartilage by the differentiating human mesenchymal stem cells (hMSCs). Growth factors included BMP-7, IGF-1, and hydroxyapatite (HA) for the superficial, middle, and calcified zones, respectively; optimum matrix stiffness was 80 kPa, 2.1 MPa, and 320 MPa; and nanofibers were aligned horizontal, random, and perpendicular to the gel surface. hMSCs with zone-specific cell densities were encapsulated in engineered hydrogels and cultured with or without TGF-ß1, zone-specific growth factor, optimum matrix modulus, and fiber addition and cultured in basic chondrogenic medium. The expression of encapsulated cells was measured by mRNA, protein, and biochemical analysis. Results indicated that zone-specific matrix stiffness had a dominating effect on chondrogenic differentiation of hMSCs to the superficial and calcified zone phenotypes. Addition of aligned nanofibers parallel to the direction of gel surface significantly enhanced expression of Col II in the superficial zone chondrogenic differentiation of hMSCs. Conversely, biomolecular factor IGF-1 in combination with TGF-ß1 had a dominating effect on the middle zone chondrogenic differentiation of hMSCs. Results of this work could potentially lead to the development of multilayer grafts mimicking the zonal organization of articular cartilage.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Células-Tronco Mesenquimais/citologia , Adulto , Fenômenos Biomecânicos/efeitos dos fármacos , Durapatita/farmacologia , Módulo de Elasticidade/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Nanofibras/química , Polietilenoglicóis/química , Fator de Crescimento Transformador beta1/farmacologia
11.
J Control Release ; 223: 126-136, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26721447

RESUMO

Reconstruction of large bone defects is limited by insufficient vascularization and slow bone regeneration. The objective of this work was to investigate the effect of spatial and temporal release of recombinant human bone morphogenetic protein-2 (BMP2) and vascular endothelial growth factor (VEGF) on the extent of osteogenic and vasculogenic differentiation of human mesenchymal stem cells (hMSCs) and endothelial colony-forming cells (ECFCs) encapsulated in a patterned hydrogel. Nanogels (NGs) based on polyethylene glycol (PEG) macromers chain-extended with short lactide (L) and glycolide (G) segments were used for grafting and timed-release of BMP2 and VEGF. NGs with 12kDa PEG molecular weight (MW), 24 LG segment length, and 60/40L/G ratio (P12-II, NG(10)) released the grafted VEGF in 10days. NGs with 8kDa PEG MW, 26 LG segment length, and 60/40L/G ratio (P8-I, NG(21)) released the grafted BMP2 in 21days. hMSCs and NG-BMP2 were encapsulated in a patterned matrix based on acrylate-functionalized lactide-chain-extended star polyethylene glycol (SPELA) hydrogel and microchannel patterns filled with a suspension of hMSCs+ECFCs and NG-VEGF in a crosslinked gelatin methacryloyl (GelMA) hydrogel. Groups included patterned constructs without BMP2/VEGF (None), with directly added BMP2/VEGF, and NG-BMP2/NG-VEGF. Based on the results, timed-release of VEGF in the microchannels in 10days from NG(10) and BMP2 in the matrix in 21days from NG(21) resulted in highest extent of osteogenic and vasculogenic differentiation of the encapsulated hMSCs and ECFCs compared to direct addition of VEGF and BMP2. Further, timed-release of VEGF from NG(10) in hMSC+ECFC encapsulating microchannels and BMP2 from NG(21) in hMSC encapsulating matrix sharply increased bFGF expression in the patterned constructs. The results suggest that mineralization and vascularization are coupled by localized secretion of paracrine signaling factors by the differentiating hMSCs and ECFCs.


Assuntos
Proteína Morfogenética Óssea 2/administração & dosagem , Células-Tronco/efeitos dos fármacos , Fator de Crescimento Transformador beta/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Antígenos CD/genética , Proteína Morfogenética Óssea 2/farmacologia , Caderinas/genética , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , DNA/metabolismo , Endotélio Vascular/citologia , Humanos , Hidrogéis , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Poliésteres/química , Polietilenoglicóis/química , Ácido Poliglicólico/química , RNA Mensageiro/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Células-Tronco/citologia , Fator de Crescimento Transformador beta/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia
12.
J Tissue Eng Regen Med ; 10(2): E132-46, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23897753

RESUMO

Biomineralization is mediated by extracellular matrix (ECM) proteins with amino acid sequences rich in glutamic acid. The objective of this study was to investigate the effect of calcium phosphate deposition on aligned nanofibres surface-modified with a glutamic acid peptide on osteogenic differentiation of rat marrow stromal cells. Blend of EEGGC peptide (GLU) conjugated low molecular weight polylactide (PLA) and high molecular weight poly(lactide-co-glycolide) (PLGA) was electrospun to form aligned nanofibres (GLU-NF). The GLU-NF microsheets were incubated in a modified simulated body fluid for nucleation of calcium phosphate crystals on the fibre surface. To achieve a high calcium phosphate to fibre ratio, a layer-by-layer approach was used to improve diffusion of calcium and phosphate ions inside the microsheets. Based on dissipative particle dynamics simulation of PLGA/PLA-GLU fibres, > 80% of GLU peptide was localized to the fibre surface. Calcium phosphate to fibre ratios as high as 200%, between those of cancellous (160%) and cortical (310%) bone, was obtained with the layer-by-layer approach. The extent of osteogenic differentiation and mineralization of marrow stromal cells seeded on GLU-NF microsheets was directly related to the amount of calcium phosphate deposition on the fibres prior to cell seeding. Expression of osteogenic markers osteopontin, alkaline phosphatase (ALP), osteocalcin and type 1 collagen increased gradually with calcium phosphate deposition on GLU-NF microsheets. Results demonstrate that surface modification of aligned synthetic nanofibres with EEGGC peptide dramatically affects nucleation and growth of calcium phosphate crystals on the fibres leading to increased osteogenic differentiation of marrow stromal cells and mineralization.


Assuntos
Células da Medula Óssea/citologia , Fosfatos de Cálcio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Nanofibras/química , Osteogênese/efeitos dos fármacos , Peptídeos/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/enzimologia , Forma Celular/efeitos dos fármacos , DNA/metabolismo , Fluoresceína-5-Isotiocianato , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Láctico/farmacologia , Masculino , Nanofibras/ultraestrutura , Osteogênese/genética , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Espectroscopia de Prótons por Ressonância Magnética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/enzimologia , Propriedades de Superfície
13.
Adv Exp Med Biol ; 881: 95-110, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26545746

RESUMO

Morphogenic proteins due to their short half-life require high doses of growth factors in regeneration of load bearing tissues which leads to undesirable side effects. These side effects include bone overgrowth, tumor formation and immune reaction. An alternative approach to reduce undesirable side effects of proteins in regenerative medicine is to use morphogenic peptides derived from the active domains of morphogenic proteins or soluble and insoluble components of the extracellular matrix of mineralized load bearing tissues to induce differentiation of progenitor cells, mineralization, maturation and bone formation. In that regard, many peptides with osteogenic activity have been discovered. These include peptides derived from bone morphogenic proteins (BMPs), those based on interaction with integrin and heparin-binding receptors, collagen derived peptides, peptides derived from other soluble ECM proteins such as bone sialoprotein and enamel matrix proteins, and those peptides derived from vasculoinductive and neuro-inductive proteins. Although these peptides show significant osteogenic activity in vitro and increase mineralization and bone formation in animal models, they are not widely used in clinical orthopedic applications as an alternative to morphogenic proteins. This is partly due to the limited availability of data on structure and function of morphogenic peptides in physiological medium, particularly in tissue engineered scaffolds. Due to their amphiphilic nature, peptides spontaneously self-assemble and aggregate into micellar structures in physiological medium. Aggregation alters the sequence of amino acids in morphogenic peptides that interact with cell surface receptors thus affecting osteogenic activity of the peptide. Aggregation and micelle formation can dramatically reduce the active concentration of morphogenic peptides with many-fold increase in peptide concentration in physiological medium. Other factors that affect bioactivity are the non-specific interaction of morphogenic peptides with lipid bilayer of the cell membrane, interaction of the peptide with cell surface receptors that do not specifically induce osteogenesis leading to less-than-optimal osteogenic activity of the peptide, and less-than-optimal interaction of the peptide with osteogenic receptors on the cell surface. Covalent attachment or physical interaction with the tissue engineered matrix can also alter the bioactivity of morphogenic peptides and lead to a lower extent of osteogenesis and bone formation. This chapter reviews advances in discovery of morphogenic peptide, their structural characterization, and challenges in using morphogenic peptides in clinical applications as growth factors in tissue engineered devices for regeneration of load bearing tissues.


Assuntos
Proteínas Morfogenéticas Ósseas/química , Osteogênese/fisiologia , Peptídeos/química , Regeneração/fisiologia , Sequência de Aminoácidos , Animais , Proteínas Morfogenéticas Ósseas/farmacologia , Humanos , Dados de Sequência Molecular , Osteogênese/efeitos dos fármacos , Peptídeos/farmacologia , Regeneração/efeitos dos fármacos , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências , Suporte de Carga
14.
PLoS One ; 10(7): e0132377, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26168187

RESUMO

INTRODUCTION: The growth and expression of cancer stem cells (CSCs) depend on many factors in the tumor microenvironment. The objective of this work was to investigate the effect of cancer cells' tissue origin on the optimum matrix stiffness for CSC growth and marker expression in a model polyethylene glycol diacrylate (PEGDA) hydrogel without the interference of other factors in the microenvironment. METHODS: Human MCF7 and MDA-MB-231 breast carcinoma, HCT116 colorectal and AGS gastric carcinoma, and U2OS osteosarcoma cells were used. The cells were encapsulated in PEGDA gels with compressive moduli in the 2-70 kPa range and optimized cell seeding density of 0.6x106 cells/mL. Micropatterning was used to optimize the growth of encapsulated cells with respect to average tumorsphere size. The CSC sub-population of the encapsulated cells was characterized by cell number, tumorsphere size and number density, and mRNA expression of CSC markers. RESULTS: The optimum matrix stiffness for growth and marker expression of CSC sub-population of cancer cells was 5 kPa for breast MCF7 and MDA231, 25 kPa for colorectal HCT116 and gastric AGS, and 50 kPa for bone U2OS cells. Conjugation of a CD44 binding peptide to the gel stopped tumorsphere formation by cancer cells from different tissue origin. The expression of YAP/TAZ transcription factors by the encapsulated cancer cells was highest at the optimum stiffness indicating a link between the Hippo transducers and CSC growth. The optimum average tumorsphere size for CSC growth and marker expression was 50 µm. CONCLUSION: The marker expression results suggest that the CSC sub-population of cancer cells resides within a niche with optimum stiffness which depends on the cancer cells' tissue origin.


Assuntos
Células-Tronco Neoplásicas/fisiologia , Contagem de Células , Linhagem Celular Tumoral/fisiologia , Citometria de Fluxo , Células HCT116/fisiologia , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato , Immunoblotting , Células MCF-7/fisiologia , Osteossarcoma/fisiopatologia , Polietilenoglicóis , Reação em Cadeia da Polimerase em Tempo Real , Neoplasias Gástricas/fisiopatologia , Microambiente Tumoral/fisiologia
15.
Langmuir ; 31(18): 5130-40, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25879768

RESUMO

Carboxylate-rich organic acids play an important role in controlling the growth of apatite crystals and the extent of mineralization in the natural bone. The objective of this work was to investigate the effect of organic acids on calcium phosphate (CaP) nucleation on nanofiber microsheets functionalized with a glutamic acid peptide and osteogenic differentiation of human mesenchymal stem cells (hMSCs) seeded on the CaP-nucleated microsheets. High molecular weight poly(dl-lactide) (DL-PLA) was mixed with low molecular weight L-PLA conjugated with Glu-Glu-Gly-Gly-Cys peptide, and the mixture was electrospun to generate aligned nanofiber microsheets. The nanofiber microsheets were incubated in a modified simulated body fluid (mSBF) supplemented with different organic acids for nucleation and growth of CaP crystals on the nanofibers. Organic acids included citric acid (CA), hydroxycitric acid (HCA), tartaric acid (TART), malic acid (MA), ascorbic acid (AsA), and salicylic acid (SalA). HCA microsheets had the highest CaP content at 240 ± 10% followed by TART and CA with 225 ± 8% and 225 ± 10%, respectively. The Ca/P ratio and percent crystallinity of the nucleated CaP in TART microsheets was closest to that of stoichiometric hydroxyapatite. The extent of CaP nucleation and growth on the nanofiber microsheets depended on the acidic strength and number of hydrogen-bonding hydroxyl groups of the organic acids. Compressive modulus and degradation of the CaP nucleated microsheets were related to percent crystallinity and CaP content. Osteogenic differentiation of hMSCs seeded on the microsheets and cultured in osteogenic medium increased only for those microsheets nucleated with CaP by incubation in CA or AsA-supplemented mSBF. Further, only CA microsheets stimulated bone nodule formation by the seeded hMSCs.


Assuntos
Fosfatos de Cálcio/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanofibras/química , Oligopeptídeos/química , Ácido Ascórbico/farmacologia , Diferenciação Celular/efeitos dos fármacos , Citratos/farmacologia , Ácido Cítrico/farmacologia , Humanos , Malatos/farmacologia , Ácido Salicílico/farmacologia , Tartaratos/farmacologia
16.
Integr Biol (Camb) ; 7(1): 112-27, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25387395

RESUMO

Articular cartilage is organized into multiple zones including superficial, middle and calcified zones with distinct cellular and extracellular components to impart lubrication, compressive strength, and rigidity for load transmission to bone, respectively. During native cartilage tissue development, changes in biochemical, mechanical, and cellular factors direct the formation of stratified structure of articular cartilage. The objective of this work was to investigate the effect of combined gradients in cell density, matrix stiffness, and zone-specific growth factors on the zonal organization of articular cartilage. Human mesenchymal stem cells (hMSCs) were encapsulated in acrylate-functionalized lactide-chain-extended polyethylene glycol (SPELA) gels simulating cell density and stiffness of the superficial, middle and calcified zones. The cell-encapsulated gels were cultivated in a medium supplemented with growth factors specific to each zone and the expression of zone-specific markers was measured with incubation time. Encapsulation of 60 × 10(6) cells per mL hMSCs in a soft gel (80 kPa modulus) and cultivation with a combination of TGF-ß1 (3 ng mL(-1)) and BMP-7 (100 ng mL(-1)) led to the expression of markers for the superficial zone. Conversely, encapsulation of 15 × 10(6) cells per mL hMSCs in a stiff gel (320 MPa modulus) and cultivation with a combination of TGF-ß1 (30 ng mL(-1)) and hydroxyapatite (3%) led to the expression of markers for the calcified zone. Further, encapsulation of 20 × 10(6) cells per mL hMSCs in a gel with 2.1 MPa modulus and cultivation with a combination of TGF-ß1 (30 ng mL(-1)) and IGF-1 (100 ng mL(-1)) led to up-regulation of the middle zone markers. Results demonstrate that a developmental approach with gradients in cell density, matrix stiffness, and zone-specific growth factors can potentially regenerate zonal structure of the articular cartilage.


Assuntos
Cartilagem Articular/crescimento & desenvolvimento , Condrócitos/fisiologia , Mecanotransdução Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Regeneração/fisiologia , Cartilagem Articular/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Condrócitos/citologia , Condrogênese/fisiologia , Matriz Extracelular/metabolismo , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais
17.
Tissue Eng Part A ; 21(1-2): 134-46, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25051457

RESUMO

An attractive approach to reduce the undesired side effects of bone morphogenetic proteins (BMPs) in regenerative medicine is to use osteoinductive peptide sequences derived from BMPs. Although the structure and function of BMPs have been studied extensively, there is limited data on structure and activity of BMP-derived peptides immobilized in hydrogels. The objective of this work was to investigate the effect of concentration and hydrophobicity of the BMP-2 peptide, corresponding to residues 73-92 of the knuckle epitope of BMP-2 protein, on peptide aggregation and osteogenic differentiation of human mesenchymal stem cells encapsulated in a polyethylene glycol (PEG) hydrogel. The peptide hydrophobicity was varied by capping PEG chain ends with short lactide segments. The BMP-2 peptide with a positive index of hydrophobicity had a critical micelle concentration (CMC) and formed aggregates in aqueous solution. Based on simulation results, there was a slight increase in the concentration of free peptide in solution with 1000-fold increase in peptide concentration. The dose-osteogenic response curve of the BMP-2 peptide was in the 0.0005-0.005 mM range, and osteoinductive potential of the BMP-2 peptide was significantly less than that of BMP-2 protein even at 1000-fold higher concentrations, which was attributed to peptide aggregation. Further, the peptide or PEG-peptide aggregates had significantly higher interaction energy with the cell membrane compared with the free peptide, which led to a higher nonspecific interaction with the cell membrane and loss of osteoinductive potential. Conjugation of the BMP-2 peptide to PEG increased CMC and osteoinductive potential of the peptide whereas conjugation to lactide-capped PEG reduced CMC and osteoinductive potential of the peptide. Experimental and simulation results revealed that osteoinductive potential of the BMP-2 peptide is correlated with its CMC and the free peptide concentration in aqueous medium and not the total concentration.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Osseointegração/efeitos dos fármacos , Peptídeos/farmacologia , Agregados Proteicos/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Sequência de Aminoácidos , Cálcio/metabolismo , DNA/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , Dados de Sequência Molecular , Peptídeos/química , Polietilenoglicóis/farmacologia
18.
Biomacromolecules ; 14(8): 2917-28, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23859006

RESUMO

Degradable, in situ gelling, inert hydrogels with tunable properties are very attractive as a matrix for cell encapsulation and delivery to the site of regeneration. Cell delivery is generally limited by the toxicity of gelation and degradation reactions. The objective of this work was to investigate by simulation and experimental measurement gelation kinetics and degradation rate of star acrylated polyethylene glycol (PEG) macromonomers chain-extended with short hydroxy acid (HA) segments (SPEXA) as a function of HA monomer type and number of HA repeat units. HA monomers included least hydrophobic glycolide (G), lactide (L), p-dioxanone (D), and most hydrophobic ε-caprolactone (C). Chain extension of PEG with short HA segments resulted in micelle formation for all HA types. There was a significant decrease in gelation time of SPEXA precursor solutions with HA chain-extension for all HA types due to micelle formation, consistent with the simulated increase in acrylate-acrylate (Ac-Ac) and Ac-initiator integration numbers. The hydrolysis rate of SPEXA hydrogels was strongly dependent on HA type and number of HA repeat units. SPEXA gels chain-extended with the least hydrophobic glycolide completely degraded within days, lactide within weeks, and p-dioxanone and ε-caprolactone degraded within months. The wide range of degradation rates observed for SPEXA gels can be explained by large differences in equilibrium water content of the micelles for different HA monomer types. A biphasic relationship between HA segment length and gel degradation rate was observed for all HA monomers, which was related to the transition from surface (controlled by HA segment length) to bulk (controlled by micelle equilibrium water content) hydrolysis within the micelle phase. To our knowledge, this is the first report on transition from surface to bulk degradation at the nanoscale in hydrogels.


Assuntos
Hidrogéis/química , Nanoestruturas/química , Polietilenoglicóis/química , Animais , Diferenciação Celular , Células Cultivadas , Dioxanos/química , Óxido de Etileno/química , Interações Hidrofóbicas e Hidrofílicas , Hidroxiácidos/química , Cinética , Masculino , Células-Tronco Mesenquimais/fisiologia , Micelas , Simulação de Dinâmica Molecular , Osteogênese , Transição de Fase , Poliésteres/química , Ratos , Ratos Wistar , Alicerces Teciduais/química
19.
PLoS One ; 8(3): e59147, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23527117

RESUMO

INTRODUCTION: As cancer cells are affected by many factors in their microenvironment, a major challenge is to isolate the effect of a specific factor on cancer stem cells (CSCs) while keeping other factors unchanged. We have developed a synthetic inert 3D polyethylene glycol diacrylate (PEGDA) gel culture system as a unique tool to study the effect of microenvironmental factors on CSCs response. We have reported that CSCs formed in the inert PEGDA gel by encapsulation of breast cancer cells maintain their stemness within a certain range of gel stiffness. The objective was to investigate the effect of CD44 binding peptide (CD44BP) conjugated to the gel on the maintenance of breast CSCs. METHODS: 4T1 or MCF7 breast cancer cells were encapsulated in PEGDA gel with CD44BP conjugation. Control groups included dissolved CD44BP and the gel with mutant CD44BP conjugation. Tumorsphere size and density, and expression of CSC markers were determined after 9 days. For in vivo, cell encapsulated gels were inoculated in syngeneic Balb/C mice and tumor formation was determined after 4 weeks. Effect of CD44BP conjugation on breast CSC maintenance was compared with integrin binding RGD peptide (IBP) and fibronectin-derived heparin binding peptide (FHBP). RESULTS: Conjugation of CD44BP to the gel inhibited breast tumorsphere formation in vitro and in vivo. The ability of the encapsulated cells to form tumorspheres in the peptide-conjugated gels correlated with the expression of CSC markers. Tumorsphere formation in vitro was enhanced by FHBP while it was abolished by IBP. CONCLUSION: CD44BP and IBP conjugated to the gel abolished tumorsphere formation by encapsulated 4T1 cells while FHBP enhanced tumorsphere formation compared to cells in the gel without peptide. The PEGDA hydrogel culture system provides a novel tool to investigate the individual effect of factors in the microenvironment on CSC maintenance without interference of other factors.


Assuntos
Neoplasias da Mama/metabolismo , Receptores de Hialuronatos/metabolismo , Células-Tronco Neoplásicas/metabolismo , Peptídeos/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Fibronectinas/química , Fibronectinas/metabolismo , Humanos , Receptores de Hialuronatos/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Peptídeos/química , Ligação Proteica , Esferoides Celulares , Células Tumorais Cultivadas
20.
Eur J Pharm Biopharm ; 84(1): 49-62, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23275111

RESUMO

An exciting approach to tumor delivery is encapsulation of the drug in self-assembled polymer-peptide nanoparticles. The objective of this work was to synthesize a conjugate of low molecular weight polylactide (LMW PLA) and V6K2 peptide and investigate self-assembly, drug release kinetics, cell uptake and toxicity, drug pharmacokinetics, and tumor cell invasion with Doxorubicin (DOX) or paclitaxel (PTX). The results for PLA-V6K2 self-assembled NPs were compared with those of polyethylene glycol stabilized PLA (PLA-EG) NPs. The size of PLA-V6K2 and PLA-EG NPs was 100 ± 20 and 130 ± 50 nm, respectively, with polydispersity index of 1.04 and 1.14. The encapsulation efficiency of DOX in PLA-V6K2 and PLA-EG NPs was 44 ± 9% and 55 ± 5%, respectively, and that of PTX was >90 for both NP types. The release of DOX and PTX from PLA-V6K2 was slower than that of PLA-EG, and the release rate was relatively constant with time. Based on molecular dynamic simulation, the less hydrophobic DOX was distributed in the lactide core as well as the peptide shell, while the hydrophobic PTX was localized mainly to the lactide core. PLA-V6K2 NPs had significantly higher cell uptake by 4T1 mouse breast carcinoma cells compared to PLA-EG NPs, which was attributed to the electrostatic interactions between the peptide and negatively charged moieties on the cell membrane. PLA-V6K2 NPs showed no toxicity to marrow stromal cells. DOX-loaded PLA-V6K2 NPs showed higher toxicity to 4T1 cells and the DNA damage response, and apoptosis was delayed compared to the free DOX. DOX or PTX encapsulated in PLA-V6K2 NPs significantly reduced invasion of 4T1 cells compared to those cells treated with the drug in PLA-EG NPs. Invasion of 4T1 cells treated with DOX in PLA-V6K2 and PLA-EG NPs was 5 ± 1% and 30 ± 5%, respectively, and that of PTX was 11 ± 2% and 40 ± 7%. The AUC of DOX in PLA-V6K2 NPs was 67% and 21% higher than those of free DOX and PLA-EG NPs, respectively. DOX-loaded PLA-V6K2 NPs injected in C3HeB/FeJ mice inoculated with MTCL syngeneic breast cancer cells displayed higher tumor toxicity than PLA-EG NPs and lower host toxicity than the free DOX. Cationic PLA-V6K2 NPs with higher tumor toxicity than the PLA-EG NPs are potentially useful in chemotherapy.


Assuntos
Nanopartículas , Oligopeptídeos/farmacocinética , Poliésteres/farmacocinética , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Camundongos , Camundongos Endogâmicos C3H , Nanopartículas/toxicidade , Oligopeptídeos/toxicidade , Poliésteres/toxicidade , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA