Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Rep (Hoboken) ; 7(8): e2152, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39118438

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) represents a primary liver tumor characterized by a bleak prognosis and elevated mortality rates, yet its precise molecular mechanisms have not been fully elucidated. This study uses advanced bioinformatics techniques to discern differentially expressed genes (DEGs) implicated in the pathogenesis of HCC. The primary objective is to discover novel biomarkers and potential therapeutic targets that can contribute to the advancement of HCC research. METHODS: The bioinformatics analysis in this study primarily utilized the Gene Expression Omnibus (GEO) database as data source. Initially, the Transcriptome analysis console (TAC) screened for DEGs. Subsequently, we constructed a protein-protein interaction (PPI) network of the proteins associated to the identified DEGs with the STRING database. We obtained our hub genes using Cytoscape and confirmed the results through the GEPIA database. Furthermore, we assessed the prognostic significance of the identified hub genes using the GEPIA database. To explore the regulatory interactions, a miRNA-gene interaction network was also constructed, incorporating information from the miRDB database. For predicting the impact of gene overexpression on drug effects, we utilized CANCER DP. RESULTS: A comprehensive analysis of HCC gene expression profiles revealed a total of 4716 DEGs, consisting of 2430 upregulated genes and 2313 downregulated genes in HCC sample compared to healthy control group. These DEGs exhibited significant enrichment in key pathways such as the PI3K-Akt signaling pathway, nuclear receptors meta-pathway, and various metabolism-related pathways. Further exploration of the PPI network unveiled the P53 signaling pathway and pyrimidine metabolism as the most prominent pathways. We identified 10 hub genes (ASPM, RRM2, CCNB1, KIF14, MKI67, SHCBP1, CENPF, ANLN, HMMR, and EZH2) that exhibited significant upregulation in HCC samples compared to healthy control group. Survival analysis indicated that elevated expression levels of these genes were strongly associated with changes in overall survival in HCC patients. Lastly, we identified specific miRNAs that were found to influence the expression of these genes, providing valuable insights into potential regulatory mechanisms underlying HCC progression. CONCLUSION: The findings of this study have successfully identified pivotal genes and pathways implicated in the pathogenesis of HCC. These novel discoveries have the potential to significantly enhance our understanding of HCC at the molecular level, opening new ways for the development of targeted therapies and improved prognosis evaluation.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Neoplasias Hepáticas , Mapas de Interação de Proteínas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/terapia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , MicroRNAs/genética , Transcriptoma , Bases de Dados Genéticas , Transdução de Sinais/genética
2.
PLoS One ; 18(10): e0292434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37796859

RESUMO

Cystic echinococcosis (CE) is a life-threatening helminthic disease caused by the Echinococcus granulosus sensulato complex. Previous evidence indicates that the host's innate immune responses against CE can combat and regulate the growth rate and mortality of hydatid cyst in the host's internal organs. However, the survival mechanisms of CE are not yet fully elucidated in the human body. In the present study, the apoptotic effects of fertile and infertile hydatid fluid (HF) were tested on murine peritoneal cells in vivo mice model. Mice were divided into five groups including; control group, fertile HF-treated peritoneal cells, infertile HF-treated peritoneal cells, protoscolices (PSCs)-treated peritoneal cells and HF+PSCs-treated peritoneal cells group. Mice groups were intraperitoneally inoculated with PBS, HF, and/or PSCs. Afterwards, peritoneal cells were isolated and mRNA expression of STAT3, caspase-3, p73 and Smac genes were evaluated by quantitative Real-time PCR. After 48 hours of exposure, the protein levels of Smac and STAT3 was determined by western blotting technique. After 6 hours of exposure, Caspase-3 activity was also measured by fluorometric assay. The intracellular reactive oxygen species (ROS) production was examined in all groups. The mRNA expression levels of p73, caspase-3 and also Caspase-3 activity in HF+PSCs-treated peritoneal cells were higher than in the test and control groups (Pv<0.05), while the mRNA expression level of anti-apoptotic STAT3 and Smac genes in HF+PSC-treated peritoneal cells were lower than in the other groups (Pv<0.05). As well, the level of intracellular ROS in the fertile HCF-treated peritoneal cells, infertile HCF-treated peritoneal cells, PSC-treated peritoneal cells and HF+PSC-treated peritoneal cells groups were significantly higher than in the control group (Pv<0.05).Current findings indicates that oxidative stress and p73 can trigger the apoptosis of murine peritoneal cells through modulator of HF-treated PSCs that is likely one of the hydatid cyst survival mechanisms in vivo mice model.


Assuntos
Apoptose , Equinococose , Echinococcus granulosus , Proteína Tumoral p73 , Animais , Camundongos , Caspase 3/metabolismo , Espécies Reativas de Oxigênio , RNA Mensageiro , Proteína Tumoral p73/metabolismo
3.
Pathogens ; 12(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36839525

RESUMO

Toxoplasma gondii (T. gondii) is an obligate intracellular parasite. During the parasitic invasion, T. gondii creates a parasitophorous vacuole, which enables the modulation of cell functions, allowing its replication and host infection. It has effective strategies to escape the immune response and reach privileged immune sites and remain inactive in a controlled environment in tissue cysts. This current review presents the factors that affect host cells and the parasite, as well as changes in the immune system during host cell infection. The secretory organelles of T. gondii (dense granules, micronemes, and rhoptries) are responsible for these processes. They are involved with proteins secreted by micronemes and rhoptries (MIC, AMA, and RONs) that mediate the recognition and entry into host cells. Effector proteins (ROP and GRA) that modify the STAT signal or GTPases in immune cells determine their toxicity. Interference byhost autonomous cells during parasitic infection, gene expression, and production of microbicidal molecules such as reactive oxygen species (ROS) and nitric oxide (NO), result in the regulation of cell death. The high level of complexity in host cell mechanisms prevents cell death in its various pathways. Many of these abilities play an important role in escaping host immune responses, particularly by manipulating the expression of genes involved in apoptosis, necrosis, autophagy, and inflammation. Here we present recent works that define the mechanisms by which T. gondii interacts with these processes in infected host cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA