Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Pharmaceutics ; 16(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38399265

RESUMO

Artificial intelligence (AI) is progressively spreading through the world of health, particularly in the field of oncology. AI offers new, exciting perspectives in drug development as toxicity and efficacy can be predicted from computer-designed active molecular structures. AI-based in silico clinical trials are still at their inception in oncology but their wider use is eagerly awaited as they should markedly reduce durations and costs. Health authorities cannot neglect this new paradigm in drug development and should take the requisite measures to include AI as a new pillar in conducting clinical research in oncology.

2.
Virchows Arch ; 484(2): 233-246, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37801103

RESUMO

The continuing evolution of treatment options in thoracic oncology requires the pathologist to regularly update diagnostic algorithms for management of tumor samples. It is essential to decide on the best way to use tissue biopsies, cytological samples, as well as liquid biopsies to identify the different mandatory predictive biomarkers of lung cancers in a short turnaround time. However, biological resources and laboratory member workforce are limited and may be not sufficient for the increased complexity of molecular pathological analyses and for complementary translational research development. In this context, the surgical pathologist is the only one who makes the decisions whether or not to send specimens to immunohistochemical and molecular pathology platforms. Moreover, the pathologist can rapidly contact the oncologist to obtain a new tissue biopsy and/or a liquid biopsy if he/she considers that the biological material is not sufficient in quantity or quality for assessment of predictive biomarkers. Inadequate control of algorithms and sampling workflow may lead to false negative, inconclusive, and incomplete findings, resulting in inappropriate choice of therapeutic strategy and potentially poor outcome for patients. International guidelines for lung cancer treatment are based on the results of the expression of different proteins and on genomic alterations. These guidelines have been established taking into consideration the best practices to be set up in clinical and molecular pathology laboratories. This review addresses the current predictive biomarkers and algorithms for use in thoracic oncology molecular pathology as well as the central role of the pathologist, notably in the molecular tumor board and her/his participation in the treatment decision-making. The perspectives in this setting will be discussed.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Feminino , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Patologia Molecular/métodos , Biomarcadores Tumorais/análise , Biópsia
3.
Trends Mol Med ; 29(11): 897-911, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37704493

RESUMO

The past decade has witnessed a revolution in cancer treatment by shifting from conventional therapies to immune checkpoint inhibitors (ICIs). These immunotherapies unleash the host immune system against the tumor and have achieved unprecedented durable remission. However, 80% of patients do not respond. This review discusses how bacteria are unexpected drivers that reprogram tumor immunity. Manipulating the microbiota impacts on tumor development and reprograms the tumor microenvironment (TME) of mice on immunotherapy. We anticipate that harnessing commensals and the tumor microbiome holds promise to identify patients who will benefit from immunotherapy and guide the choice of new ICI combinations to advance treatment efficacy.


Assuntos
Microbiota , Neoplasias , Humanos , Animais , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Microambiente Tumoral
4.
Br J Cancer ; 129(9): 1367-1372, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37735244

RESUMO

The combination of immune checkpoint inhibitors and anti-angiogenic agents is a promising new approach in cancer treatment. Immune checkpoint inhibitors block the signals that help cancer cells evade the immune system, while anti-angiogenic agents target the blood vessels that supply the tumour with nutrients and oxygen, limiting its growth. Importantly, this combination triggers synergistic effects based on molecular and cellular mechanisms, leading to better response rates and longer progression-free survival than treatment alone. However, these combinations can also lead to increased side effects and require close monitoring.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Neoplasias/tratamento farmacológico
5.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446253

RESUMO

Liquid biopsy and circulating tumor cell (CTC) screening has gained interest over the last two decades for detecting almost all solid malignancies. To date, the major limitation in terms of the applicability of CTC screening in daily clinical practice is the lack of reproducibility due to the high number of platforms available that use various technologies (e.g., label-dependent versus label-free detection). Only a few studies have compared different CTC platforms. The aim of this study was to compare the efficiency of four commercially available CTC platforms (Vortex (VTX-1), ClearCell FX, ISET, and Cellsearch) for the detection and identification of uveal melanoma cells (OMM 2.3 cell line). Tumor cells were seeded in RPMI medium and venous blood from healthy donors, and then processed similarly using these four platforms. Melan-A immunochemistry was performed to identify tumor cells, except when the Cellsearch device was used (automated identification). The mean overall recovery rates (with mean recovered cells) were 39.2% (19.92), 22.2% (11.31), 8.9% (4.85), and 1.1% (0.20) for the ISET, Vortex (VTX-1), ClearCell FX, and CellSearch platforms, respectively. Although paramount, the recovery rate is not sufficient to assess a CTC platform. Other parameters, such as the purpose for using a platform (diagnosis, genetics, drug sensitivity, or patient-derived xenograft models), reproducibility, purity, user-friendliness, cost-effectiveness, and ergonomics, should also be considered before they can be used in daily clinical practice and are discussed in this article.


Assuntos
Melanoma , Células Neoplásicas Circulantes , Neoplasias Uveais , Humanos , Células Neoplásicas Circulantes/patologia , Reprodutibilidade dos Testes , Melanoma/patologia , Neoplasias Uveais/diagnóstico , Neoplasias Uveais/patologia , Biomarcadores Tumorais/metabolismo
6.
Cancers (Basel) ; 15(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37370689

RESUMO

Overactivation of the mitogen-activated protein kinase (MAPK) pathway is a critical driver of many human cancers. However, therapies directly targeting this pathway lead to cancer drug resistance. Resistance has been linked to compensatory RAS overexpression, but the mechanisms underlying this response remain unclear. Here, we find that MEK inhibitors (MEKi) are associated with an increased translation of the KRAS and NRAS oncogenes through a mechanism involving dissolution of processing body (P-body) biocondensates. This effect is seen across different cell types and is extremely dynamic since removal of MEKi and ERK reactivation result in reappearance of P-bodies and reduced RAS-dependent signaling. Moreover, we find that P-body scaffold protein levels negatively impact RAS expression. Overall, we describe a new feedback loop mechanism involving biocondensates such as P-bodies in the translational regulation of RAS proteins and MAPK signaling.

7.
Cancers (Basel) ; 15(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37190299

RESUMO

Ophthalmic malignancies include various rare neoplasms involving the conjunctiva, the uvea, or the periocular area. These tumors are characterized by their scarcity as well as their histological, and sometimes genetic, diversity. Uveal melanoma (UM) is the most common primary intraocular malignancy. UM raises three main challenges highlighting the specificity of ophthalmic malignancies. First, UM is a very rare malignancy with an estimated incidence of 6 cases per million inhabitants. Second, tissue biopsy is not routinely recommended due to the risk of extraocular dissemination. Third, UM is an aggressive cancer because it is estimated that about 50% of patients will experience metastatic spread without any curative treatment available at this stage. These challenges better explain the two main objectives in the creation of a dedicated UM biobank. First, collecting UM samples is essential due to tissue scarcity. Second, large-scale translational research programs based on stored human samples will help to better determine UM pathogenesis with the aim of identifying new biomarkers, allowing for early diagnosis and new targeted treatment modalities. Other periocular malignancies, such as conjunctival melanomas or orbital malignancies, also raise specific concerns. In this context, the number of biobanks worldwide dedicated to ocular malignancies is very limited. The aims of this article were (i) to describe the specific challenges raised by a dedicated ocular malignancy biobank, (ii) to report our experience in setting up such a biobank, and (iii) to discuss future perspectives in this field.

9.
Br J Cancer ; 126(12): 1834-1836, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523880

RESUMO

There is currently a strong development of therapeutic combinations with checkpoint inhibitors (CPIs). The most promising combinations with CPIs concern anti-angiogenic agents and BRAF/MEK inhibitors. The timing of the initiation of the combination should be particularly well investigated for chemotherapy. Combinations between CPIs raise questions about risk/benefit ratio and overall clinical activity.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Casamento , Melanoma/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf , Neoplasias Cutâneas/tratamento farmacológico
10.
Autophagy ; 18(11): 2519-2536, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35383530

RESUMO

At a time when complex diseases affect globally 280 million people and claim 14 million lives every year, there is an urgent need to rapidly increase our knowledge into their underlying etiologies. Though critical in identifying the people at risk, the causal environmental factors (microbiome and/or pollutants) and the affected pathophysiological mechanisms are not well understood. Herein, we consider the variations of autophagy-related (ATG) genes at the heart of mechanisms of increased susceptibility to environmental stress. A comprehensive autophagy genomic resource is presented with 263 single nucleotide polymorphisms (SNPs) for 69 autophagy-related genes associated with 117 autoimmune, inflammatory, infectious, cardiovascular, neurological, respiratory, and endocrine diseases. We thus propose the term 'autophagopathies' to group together a class of complex human diseases the etiology of which lies in a genetic defect of the autophagy machinery, whether directly related or not to an abnormal flux in autophagy, LC3-associated phagocytosis, or any associated trafficking. The future of precision medicine for common diseases will lie in our ability to exploit these ATG SNP x environment relationships to develop new polygenetic risk scores, new management guidelines, and optimal therapies for afflicted patients.Abbreviations: ATG, autophagy-related; ALS-FTD, amyotrophic lateral sclerosis-frontotemporal dementia; ccRCC, clear cell renal cell carcinoma; CD, Crohn disease; COPD, chronic obstructive pulmonary disease; eQTL, expression quantitative trait loci; HCC, hepatocellular carcinoma; HNSCC, head and neck squamous cell carcinoma; GTEx, genotype-tissue expression; GWAS, genome-wide association studies; LAP, LC3-associated phagocytosis; LC3-II, phosphatidylethanolamine conjugated form of LC3; LD, linkage disequilibrium; LUAD, lung adenocarcinoma; MAF, minor allele frequency; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NSCLC, non-small cell lung cancer; OS, overall survival; PtdIns3K CIII, class III phosphatidylinositol 3 kinase; PtdIns3P, phosphatidylinositol-3-phosphate; SLE, systemic lupus erythematosus; SNPs, single-nucleotide polymorphisms; mQTL, methylation quantitative trait loci; ULK, unc-51 like autophagy activating kinase; UTRs, untranslated regions; WHO, World Health Organization.


Assuntos
Esclerose Lateral Amiotrófica , Carcinoma Hepatocelular , Carcinoma Pulmonar de Células não Pequenas , Demência Frontotemporal , Neoplasias de Cabeça e Pescoço , Neoplasias Hepáticas , Neoplasias Pulmonares , Humanos , Autofagia/genética , Medicina de Precisão , Estudo de Associação Genômica Ampla , Carcinoma de Células Escamosas de Cabeça e Pescoço , Polimorfismo Genético
11.
Cancers (Basel) ; 14(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35406400

RESUMO

KRAS mutations are among the most frequent genomic alterations identified in non-squamous non-small cell lung carcinomas (NS-NSCLC), notably in lung adenocarcinomas. In most cases, these mutations are mutually exclusive, with different genomic alterations currently known to be sensitive to therapies targeting EGFR, ALK, BRAF, ROS1, and NTRK. Recently, several promising clinical trials targeting KRAS mutations, particularly for KRAS G12C-mutated NSCLC, have established new hope for better treatment of patients. In parallel, other studies have shown that NSCLC harboring co-mutations in KRAS and STK11 or KEAP1 have demonstrated primary resistance to immune checkpoint inhibitors. Thus, the assessment of the KRAS status in advanced-stage NS-NSCLC has become essential to setting up an optimal therapeutic strategy in these patients. This stimulated the development of new algorithms for the management of NSCLC samples in pathology laboratories and conditioned reorganization of optimal health care of lung cancer patients by the thoracic pathologists. This review addresses the recent data concerning the detection of KRAS mutations in NSCLC and focuses on the new challenges facing pathologists in daily practice for KRAS status assessment.

12.
Br J Cancer ; 126(1): 1-3, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34799696

RESUMO

The combination of COVID-19 vaccination with immunotherapy by checkpoint inhibitors in cancer patients could intensify immunological stimulation with potential reciprocal benefits. Here, we examine more closely the possible adverse events that can arise in each treatment modality. Our conclusion is that caution should be exercised when combining both treatments.


Assuntos
Vacina BNT162/efeitos adversos , COVID-19/prevenção & controle , Inibidores de Checkpoint Imunológico/efeitos adversos , Imunoterapia/efeitos adversos , Neoplasias/terapia , Vacina BNT162/administração & dosagem , Vacina BNT162/imunologia , COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , Terapia Combinada/efeitos adversos , Síndrome da Liberação de Citocina/etiologia , Interações Medicamentosas , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Imunoterapia/métodos , Neoplasias/imunologia
13.
Cancers (Basel) ; 13(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065348

RESUMO

Signaling, proliferation, and inflammation are dependent on K63-linked ubiquitination-conjugation of a chain of ubiquitin molecules linked via lysine 63. However, very little information is currently available about how K63-linked ubiquitination is subverted in cancer. The present study provides, for the first time, evidence that cadmium (Cd), a widespread environmental carcinogen, is a potent activator of K63-linked ubiquitination, independently of oxidative damage, activation of ubiquitin ligase, or proteasome impairment. We show that Cd induces the formation of protein aggregates that sequester and inactivate cylindromatosis (CYLD) and selective autophagy, two tumor suppressors that deubiquitinate and degrade K63-ubiquitinated proteins, respectively. The aggregates are constituted of substrates of selective autophagy-SQSTM1, K63-ubiquitinated proteins, and mitochondria. These protein aggregates also cluster double-membrane remnants, which suggests an impairment in autophagosome maturation. However, failure to eliminate these selective cargos is not due to alterations in the general autophagy process, as degradation of long-lived proteins occurs normally. We propose that the simultaneous disruption of CYLD and selective autophagy by Cd feeds a vicious cycle that further amplifies K63-linked ubiquitination and downstream activation of the NF-κB pathway, processes that support cancer progression. These novel findings link together impairment of selective autophagy, K63-linked ubiquitination, and carcinogenesis.

14.
Trends Mol Med ; 27(9): 868-881, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34187739

RESUMO

A particularly promising cancer treatment is the use of monoclonal antibodies (mAbs) against immune checkpoints (i.e., immune checkpoint inhibitors; ICIs). However, many patients experience relapse and severe adverse events. To overcome these negative issues and improve efficiency, current approaches rely on combinatorial treatments, including some modulating the expression of programmed cell death receptor 1 (PD-1)/programmed death ligand 1 (PD-L1) immune checkpoints directly. In this review, we examine the recently discovered pathways involved in PD-L1 expression and highlight the relevant druggable strategies that are being developed to both improve the response rate and avoid the onset of resistance. Altogether, these new strategies will pave the way for effective treatment combinations in future oncology clinical trials.


Assuntos
Antígeno B7-H1 , Neoplasias , Anticorpos Monoclonais/uso terapêutico , Humanos , Imunoterapia , Neoplasias/terapia , Receptor de Morte Celular Programada 1
15.
Br J Cancer ; 124(8): 1344-1345, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33531686

RESUMO

Cancer patients are vulnerable to COVID-19 with consequences on treatment delays and on mortality rate. This Comment explores the interaction between COVID-19 and cancer with attention paid to the modulation by cancer treatments of both ADAM17 and TMPRSS2, the proteases which control ACE2 processing, the SARS-CoV-2 target.


Assuntos
Proteína ADAM17/genética , COVID-19/genética , Neoplasias/genética , Serina Endopeptidases/genética , Enzima de Conversão de Angiotensina 2/genética , COVID-19/complicações , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Mortalidade , Neoplasias/complicações , Neoplasias/epidemiologia , Neoplasias/virologia , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade
16.
Diagnostics (Basel) ; 11(2)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572782

RESUMO

Despite the recent implementation of immunotherapy as a single treatment or in combination with chemotherapy for first-line treatment of advanced non-small cell lung cancer (NSCLC), many patients do not benefit from this regimen due to primary treatment resistance or toxicity. Consequently, there is an urgent need to develop efficient biomarkers that can select patients who will benefit from immunotherapy thereby providing the appropriate treatment and avoiding toxicity. One of the biomarkers recently described for the stratification of NSCLC patients undergoing immunotherapy are mutations in STK11/LKB1, which are often associated with a lack of response to immunotherapy in some patients. Therefore, the purpose of this review is to describe the different cellular mechanisms associated with STK11/LKB1 mutations, which may explain the lack of response to immunotherapy. Moreover the review addresses the co-occurrence of additional mutations that may influence the response to immunotherapy and the current clinical studies that have further explored STK11/LKB1 as a predictive biomarker. Additionally this work includes the opportunities and limitations to look for the STK11/LKB1 status in the therapeutic strategy for NSCLC patients.

17.
Commun Biol ; 4(1): 166, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547392

RESUMO

Polo-like kinase 1 (Plk1) expression is inversely correlated with survival advantages in many cancers. However, molecular mechanisms that underlie Plk1 expression are poorly understood. Here, we uncover a hypoxia-regulated mechanism of Plk1-mediated cancer metastasis and drug resistance. We demonstrated that a HIF-2-dependent regulatory pathway drives Plk1 expression in clear cell renal cell carcinoma (ccRCC). Mechanistically, HIF-2 transcriptionally targets the hypoxia response element of the Plk1 promoter. In ccRCC patients, high expression of Plk1 was correlated to poor disease-free survival and overall survival. Loss-of-function of Plk1 in vivo markedly attenuated ccRCC growth and metastasis. High Plk1 expression conferred a resistant phenotype of ccRCC to targeted therapeutics such as sunitinib, in vitro, in vivo, and in metastatic ccRCC patients. Importantly, high Plk1 expression was defined in a subpopulation of ccRCC patients that are refractory to current therapies. Hence, we propose a therapeutic paradigm for improving outcomes of ccRCC patients.


Assuntos
Carcinoma de Células Renais , Proteínas de Ciclo Celular/fisiologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Renais , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Estudos de Coortes , Embrião não Mamífero , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Camundongos , Camundongos Nus , Metástase Neoplásica , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Regulação para Cima/genética , Peixe-Zebra , Quinase 1 Polo-Like
18.
Theranostics ; 11(3): 1310-1325, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391536

RESUMO

The programmed cell death-1/programmed cell death ligand-1 (PD-1/PD-L1) immune checkpoint proteins hold promise as diagnostic, prognostic, and therapeutic targets for precision oncology. By restoring antitumor T cell surveillance, the high degree of effectiveness of the immune checkpoint inhibitors (ICIs) has revolutionized cancer treatment. However, the majority of patients (65-80 %) treated with ICIs experience significant side effects, called immune-related adverse events (irAEs), resulting in autoimmune damage to various organs. Therefore, broadening the clinical applicability of these treatments to all cancer types requires an improved understanding of the mechanisms linking cancer immune evasion and autoimmunity. The thyroid is the endocrine gland the most frequently involved in autoimmunity and cancer, the growing incidence of which is raising serious public health issues worldwide. In addition, the risk of developing thyroid cancer is increased in patients with autoimmune thyroid disease and thyroid dysfunction is one of the most common irAEs, especially with PD­1/PD-L1 blockade. Therefore, we chose the thyroid as a model for the study of the link between autoimmunity, irAEs, and cancer. We provide an update into the current knowledge of the PD­1/PD-L1 axis and discuss the growing interest of this axis in the diagnosis, prognosis, and management of thyroid diseases within the context of autoimmunity and cancer, while embracing personalized medicine.


Assuntos
Autoimunidade/imunologia , Antígeno B7-H1/metabolismo , Biomarcadores/metabolismo , Neoplasias da Glândula Tireoide/imunologia , Neoplasias da Glândula Tireoide/metabolismo , Animais , Humanos , Medicina de Precisão/métodos , Glândula Tireoide/imunologia , Glândula Tireoide/metabolismo
19.
Cancers (Basel) ; 12(11)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238609

RESUMO

Metabolic flexibility is the ability of a cell to adapt its metabolism to changes in its surrounding environment. Such adaptability, combined with apoptosis resistance provides cancer cells with a survival advantage. Mitochondrial voltage-dependent anion channel 1 (VDAC1) has been defined as a metabolic checkpoint at the crossroad of these two processes. Here, we show that the hypoxia-induced cleaved form of VDAC1 (VDAC1-ΔC) is implicated in both the up-regulation of glycolysis and the mitochondrial respiration. We demonstrate that VDAC1-ΔC, due to the loss of the putative phosphorylation site at serine 215, concomitantly with the loss of interaction with tubulin and microtubules, reprograms the cell to utilize more metabolites, favoring cell growth in hypoxic microenvironment. We further found that VDAC1-ΔC represses ciliogenesis and thus participates in ciliopathy, a group of genetic disorders involving dysfunctional primary cilium. Cancer, although not representing a ciliopathy, is tightly linked to cilia. Moreover, we highlight, for the first time, a direct relationship between the cilium and cancer cell metabolism. Our study provides the first new comprehensive molecular-level model centered on VDAC1-ΔC integrating metabolic flexibility, ciliogenesis, and enhanced survival in a hypoxic microenvironment.

20.
Cancers (Basel) ; 12(11)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172021

RESUMO

Tissue biopsy is considered the gold standard when establishing a diagnosis of cancer. However, tissue biopsies of intraocular ophthalmic malignancies are hard to collect and are thought to be associated with a non-negligible risk of extraocular dissemination. Recently, the liquid biopsy (LB) has emerged as a viable, non-invasive, repeatable, and promising way of obtaining a diagnosis, prognosis, and theragnosis of patients with solid tumors. LB refers to blood, as well as any human liquid. The natural history of uveal melanoma (UM) and retinoblastoma (RB) are radically opposed. On the one hand, UM is known to disseminate through the bloodstream, and is, therefore, more accessible to systemic venous liquid biopsy. On the other hand, RB rarely disseminates hematogenous, and is, therefore, more accessible to local liquid biopsy by performing an anterior chamber puncture. In this review, we summarize the current knowledge concerning LB in UM, RB, conjunctival tumors, and choroidal metastases. We also develop the current limitations encountered, as well as the perspectives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA