Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotech Histochem ; 97(5): 322-333, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34607472

RESUMO

Cardiac disease is the leading cause of mortality and disability worldwide. We investigated the role of undifferentiated adipose tissue-derived mesenchymal stem cells (ADMSC) alone and ADMSC seeded onto the electro-spun nanofibers (NF) for reconstructing damaged cardiac tissue in isoprenaline-induced myocardial infarction (MI) in rats. ADMSC were sorted by morphological appearance and by detection of cluster of differentiation (CD) surface antigens. The therapeutic potential of ADMSC for treating MI was evaluated by electrocardiogram (ECG), biochemical analysis, molecular genetic analysis and histological examination. Treatment of MI-challenged rats with ADMSC improved ECG findings, which were corroborated by significant decreases in serum lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) enzyme activities together with reduced serum troponin T (cTnT) and connexin 43 (Cx43) levels. MI model rats treated with ADMSC exhibited a significant increase in serum alpha sarcomeric actin (Actn) and GATA binding protein 4 (GATA4), and NK2 homeobox 5 (NKX2.5) gene expression was decreased following treatment with ADMSC. ADMSC also ameliorated damage to cardiac tissue. The effects of ADMSC seeded onto NF were superior to those of ADMSC alone. ADMSC may be useful for mitigation of MI.


Assuntos
Células-Tronco Mesenquimais , Infarto do Miocárdio , Nanofibras , Tecido Adiposo , Animais , Infarto do Miocárdio/terapia , Ratos , Regeneração
2.
Tissue Eng Regen Med ; 17(3): 363-373, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32347454

RESUMO

BACKGROUND: Osteoporosis is a metabolic bone disease characterized by low bone density resulting in increased fracture susceptibility. This research was constructed to uncover the potential therapeutic application of osteoblasts transplantation, generated upon culturing male rat bone marrow-derived mesenchymal stem cells (BM-MSCs) in osteogenic medium (OM), OM containing gold (Au-NPs) or gold/hydroxyapatite (Au/HA-NPs) nanoparticles, in ovariectomized rats to counteract osteoporosis. METHODS: Forty rats were randomized into: (1) negative control, (2) osteoporotic rats, whereas groups (3), (4) and (5) constituted osteoporotic rats treated with osteoblasts yielded from culturing BM-MSCs in OM, OM plus Au-NPs or Au/HA-NPs, respectively. After 3 months, osterix (OSX), bone alkaline phosphatase (BALP), sclerostin (SOST) and bone sialoprotein (BSP) serum levels were assessed. In addition, gene expression levels of cathepsin K, receptor activator of nuclear factor-κb ligand (RANKL), osteoprotegerin (OPG) and RANKL/OPG ratio were evaluated using real-time PCR. Moreover, histological investigation of femur bone tissues in different groups was performed. The homing of implanted osteoblasts to the osteoporotic femur bone of rats was documented by Sex determining region Y gene detection in bone tissue. RESULTS: Our results indicated that osteoblasts infusion significantly blunted serum BALP, BSP and SOST levels, while significantly elevated OSX level. Also, they brought about significant down-regulation in gene expression levels of cathepsin K, RANKL and RANKL/OPG ratio versus untreated osteoporotic rats. Additionally, osteoblasts nidation could restore bone histoarchitecture. CONCLUSION: These findings offer scientific evidence that transplanting osteoblasts in osteoporotic rats regains the homeostasis of the bone remodeling cycle, thus providing a promising treatment strategy for primary osteoporosis.


Assuntos
Osteoblastos/transplante , Osteogênese , Osteoporose/terapia , Fosfatase Alcalina/metabolismo , Animais , Remodelação Óssea , Catepsina K/genética , Durapatita , Fêmur , Expressão Gênica , Masculino , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Osteoprotegerina , Ligante RANK , Ratos
3.
Asian Pac J Cancer Prev ; 15(10): 4281-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24935385

RESUMO

BACKGROUND: Methylation of tumor suppressor genes has been investigated in all kinds of cancer. Tumor specific epigenetic alterations can be used as a molecular markers of malignancy, which can lead to better diagnosis, prognosis and therapy. Therefore, the aim of this study was to evaluate the association between gene hypermethylation and expression of fragile histidine triad (FHIT), glutathione S-transferase P1 (GSTP1) and p16 genes and various clinicopathologic characteristics in primary non-small cell lung carcinomas (NSCLC). MATERIALS AND METHODS: The study included 28 primary non-small cell lung carcinomas, where an additional 28 tissue samples taken from apparently normal safety margin surrounding the tumors served as controls. Methylation-specific polymerase chain reaction (MSP) was performed to analyze the methylation status of FHIT, GSTP1 and p16 while their mRNA expression levels were measured using a real-time PCR assay with SYBR Green I. RESULTS: The methylation frequencies of the genes tested in NSCLC specimens were 53.6% for FHIT, 25% for GSTP1, and 0% for p16, and the risk of FHIT hypermethylation increased among patients with NSCLC by 2.88, while the risk of GSTP1 hypermethylation increased by 2.33. Hypermethylation of FHIT gene showed a highly significant correlation with pathologic stage (p<0.01) and a significant correlation with smoking habit and FHIT mRNA expression level (p<0.05). In contrast, no correlation was observed between the methylation of GSTP1 or p16 and smoking habit or any other parameter investigated (p>0.05). CONCLUSIONS: RESULTS of the present study suggest that methylation of FHIT is a useful biomarker of biologically aggressive disease in patients with NSCLC. FHIT methylation may play a role in lung cancer later metastatic stages while GSTP1 methylation may rather play a role in the early pathogenesis.


Assuntos
Hidrolases Anidrido Ácido/biossíntese , Inibidor p16 de Quinase Dependente de Ciclina/biossíntese , Metilação de DNA/genética , Glutationa S-Transferase pi/biossíntese , Neoplasias Pulmonares/genética , Proteínas de Neoplasias/biossíntese , Hidrolases Anidrido Ácido/genética , Adulto , Idoso , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Egito , Feminino , Glutationa S-Transferase pi/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Prognóstico , Regiões Promotoras Genéticas/genética , RNA Mensageiro/biossíntese , Fumar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA