Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163328

RESUMO

Cardiovascular diseases (CVDs) are the leading causes of morbidity and mortality worldwide. However, despite the recent developments in the management of CVDs, the early and long outcomes vary considerably in patients, especially with the current challenges facing the detection and treatment of CVDs. This disparity is due to a lack of advanced diagnostic tools and targeted therapies, requiring innovative and alternative methods. Nanotechnology offers the opportunity to use nanomaterials in improving health and controlling diseases. Notably, nanotechnologies have recognized potential applicability in managing chronic diseases in the past few years, especially cancer and CVDs. Of particular interest is the use of nanoparticles as drug carriers to increase the pharmaco-efficacy and safety of conventional therapies. Different strategies have been proposed to use nanoparticles as drug carriers in CVDs; however, controversies regarding the selection of nanomaterials and nanoformulation are slowing their clinical translation. Therefore, this review focuses on nanotechnology for drug delivery and the application of nanomedicine in CVDs.


Assuntos
Doenças Cardiovasculares , Nanopartículas , Nanoestruturas , Doenças Cardiovasculares/tratamento farmacológico , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina/métodos , Nanopartículas/uso terapêutico , Nanoestruturas/uso terapêutico , Nanotecnologia
2.
Front Cell Dev Biol ; 9: 681347, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497803

RESUMO

Blood outgrowth smooth muscle cells (BO-SMCs) offer the means to study vascular cells without the requirement for surgery providing opportunities for drug discovery, tissue engineering, and personalized medicine. However, little is known about these cells which meant that their therapeutic potential remains unexplored. Our objective was to investigate for the first time the ability of BO-SMCs and vessel-derived smooth muscle cells to sense the thromboxane mimetic U46619 by measuring intracellular calcium elevation and contraction. U46619 (10-6 M) increased cytosolic calcium in BO-SMCs and vascular smooth muscle cells (VSMCs) but not in fibroblasts. Increased calcium signal peaked between 10 and 20 s after U46619 in both smooth muscle cell types. Importantly, U46619 (10-9 to 10-6 M) induced concentration-dependent contractions of both BO-SMCs and VSMCs but not in fibroblasts. In summary, we show that functional responses of BO-SMCs are in line with VSMCs providing critical evidence of their application in biomedical research.

3.
Nanomaterials (Basel) ; 10(6)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471187

RESUMO

Abstract: Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Alteration of endothelial cells and the underlying vasculature plays a central role in the pathogenesis of various CVDs. The application of nanoscale materials such as nanoparticles in biomedicine has opened new horizons in the treatment of CVDs. We have previously shown that the iron metal-organic framework nanoparticle, Materials Institut Lavoisier-89 (nanoMIL-89) represents a viable vehicle for future drug delivery of pulmonary arterial hypertension. In this study, we have assessed the cellular uptake of nanoMIL-89 in pulmonary artery endothelial and smooth muscle cells using microscopy imaging techniques. We also tested the cellular responses to nanoMIL-89 using molecular and cellular assays. Microscopic images showed cellular internalization of nanoMIL-89, packaging into endocytic vesicles, and passing to daughter cells during mitosis. Moreover, nanoMIL-89 showed anti-inflammatory activity without any significant cytotoxicity. Our results indicate that nanoMIL-89 formulation may offer promising therapeutic opportunities and set forth a new prototype for drug delivery not only in CVDs, but also for other diseases yet incurable, such as diabetes and cancer.

4.
Hum Mutat ; 40(2): 230-240, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30408270

RESUMO

Homocystinuria is a rare inborn error of methionine metabolism caused by cystathionine ß-synthase (CBS) deficiency. The prevalence of homocystinuria in Qatar is 1:1,800 births, mainly due to a founder Qatari missense mutation, c.1006C>T; p.R336C (p.Arg336Cys). We characterized the structure-function relationship of the p.R336C-mutant protein and investigated the effect of different chemical chaperones to restore p.R336C-CBS activity using three models: in silico, ΔCBS yeast, and CRISPR/Cas9 p.R336C knock-in HEK293T and HepG2 cell lines. Protein modeling suggested that the p.R336C induces severe conformational and structural changes, perhaps influencing CBS activity. Wild-type CBS, but not the p.R336C mutant, was able to restore the yeast growth in ΔCBS-deficient yeast in a complementation assay. The p.R336C knock-in HEK293T and HepG2 cells decreased the level of CBS expression and reduced its structural stability; however, treatment of the p.R336C knock-in HEK293T cells with betaine, a chemical chaperone, restored the stability and tetrameric conformation of CBS, but not its activity. Collectively, these results indicate that the p.R336C mutation has a deleterious effect on CBS structure, stability, and activity, and using the chemical chaperones approach for treatment could be ineffective in restoring p.R336C CBS activity.


Assuntos
Cistationina beta-Sintase/genética , Homocistinúria/genética , Chaperonas Moleculares/genética , Proteínas Mutantes/genética , Simulação por Computador , Cistationina beta-Sintase/química , Estabilidade Enzimática , Regulação Enzimológica da Expressão Gênica/genética , Células HEK293 , Células Hep G2 , Homocistinúria/metabolismo , Homocistinúria/patologia , Humanos , Metionina/metabolismo , Chaperonas Moleculares/química , Proteínas Mutantes/química , Mutação de Sentido Incorreto/genética , Dobramento de Proteína , Estrutura Terciária de Proteína , Catar , Relação Estrutura-Atividade
5.
Br J Clin Pharmacol ; 81(4): 621-33, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26561399

RESUMO

AIMS: In vivo platelet function is a product of intrinsic platelet reactivity, modifiable by dual antiplatelet therapy (DAPT), and the extrinsic inhibitory endothelial mediators, nitric oxide (NO) and prostacyclin (PGI2 ), that are powerfully potentiated by P2Y12 receptor blockade. This implies that for individual patients endothelial mediator production is an important determinant of DAPT effectiveness. Here, we have investigated this idea using platelets taken from healthy volunteers treated with anti-platelet drugs. METHODS: Three groups of male volunteers (n = 8) received either prasugrel (10 mg), aspirin (75 mg) or DAPT (prasugrel + aspirin) once daily for 7 days. Platelet reactivity in the presence of diethylammonium (Z)-1-(N,N-diethylamino)diazen-1-ium-1,2-diolate (DEA/NONOate) and PGI2 was studied before and following treatment. RESULTS: Ex vivo, PGI2 and/or DEA/NONOate had little inhibitory effect on TRAP-6-induced platelet reactivity in control conditions. However, in the presence of DAPT, combination of DEA/NONOate + PGI2 reduced platelet aggregation (74 ± 3% to 19 ± 6%, P < 0.05). In vitro studies showed even partial (25%) P2Y12 receptor blockade produced a significant (67 ± 2% to 39 ± 10%, P < 0.05) inhibition when DEA/NONOate + PGI2 was present. CONCLUSIONS: We have demonstrated that PGI2 and NO synergize with P2Y12 receptor antagonists to produce powerful platelet inhibition. Furthermore, even with submaximal P2Y12 blockade the presence of PGI2 and NO greatly enhances platelet inhibition. Our findings highlight the importance of endothelial mediator in vivo modulation of P2Y12 inhibition and introduces the concept of refining ex vivo platelet function testing by incorporating an assessment of endothelial function to predict thrombotic outcomes better and adjust therapy to prevent adverse outcomes in individual patients.


Assuntos
Aspirina/farmacologia , Epoprostenol/farmacologia , Óxido Nítrico/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Cloridrato de Prasugrel/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Adolescente , Adulto , Aspirina/administração & dosagem , Plaquetas/efeitos dos fármacos , Sinergismo Farmacológico , Epoprostenol/administração & dosagem , Epoprostenol/metabolismo , Voluntários Saudáveis , Humanos , Técnicas In Vitro , Masculino , Óxido Nítrico/administração & dosagem , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Cloridrato de Prasugrel/administração & dosagem , Antagonistas do Receptor Purinérgico P2Y/administração & dosagem , Adulto Jovem
6.
FASEB J ; 29(6): 2595-602, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25746794

RESUMO

There is an urgent unmet need for human tissue bioassays to predict cytokine storm responses to biologics. Current bioassays that detect cytokine storm responses in vitro rely on endothelial cells, usually from umbilical veins or cell lines, cocultured with freshly isolated peripheral blood mononuclear cells (PBMCs) from healthy adult volunteers. These assays therefore comprise cells from 2 separate donors and carry the disadvantage of mismatched tissues and lack the advantage of personalized medicine. Current assays also do not fully delineate mild (such as Campath) and severe (such as TGN1412) cytokine storm-inducing drugs. Here, we report a novel bioassay where endothelial cells grown from stem cells in the peripheral blood (blood outgrowth endothelial cells) and PBMCs from the same donor can be used to create an autologous coculture bioassay that responds by releasing a plethora of cytokines to authentic TGN1412 but only modestly to Campath and not to control antibodies such as Herceptin, Avastin, and Arzerra. This assay performed better than the traditional mixed donor assay in terms of cytokine release to TGN1412 and, thus, we suggest provides significant advancement and a definitive system by which biologics can be tested and paves the way for personalized medicine.


Assuntos
Produtos Biológicos/farmacologia , Citocinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Alemtuzumab , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Bevacizumab , Bioensaio/métodos , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Meios de Cultura/farmacologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Ensaio de Imunoadsorção Enzimática , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Interleucina-2/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Reprodutibilidade dos Testes , Soro/química , Trastuzumab , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA