Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCO Clin Cancer Inform ; 7: e2200062, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37428988

RESUMO

PURPOSE: Stratifying patients with cancer according to risk of relapse can personalize their care. In this work, we provide an answer to the following research question: How to use machine learning to estimate probability of relapse in patients with early-stage non-small-cell lung cancer (NSCLC)? MATERIALS AND METHODS: For predicting relapse in 1,387 patients with early-stage (I-II) NSCLC from the Spanish Lung Cancer Group data (average age 65.7 years, female 24.8%, male 75.2%), we train tabular and graph machine learning models. We generate automatic explanations for the predictions of such models. For models trained on tabular data, we adopt SHapley Additive exPlanations local explanations to gauge how each patient feature contributes to the predicted outcome. We explain graph machine learning predictions with an example-based method that highlights influential past patients. RESULTS: Machine learning models trained on tabular data exhibit a 76% accuracy for the random forest model at predicting relapse evaluated with a 10-fold cross-validation (the model was trained 10 times with different independent sets of patients in test, train, and validation sets, and the reported metrics are averaged over these 10 test sets). Graph machine learning reaches 68% accuracy over a held-out test set of 200 patients, calibrated on a held-out set of 100 patients. CONCLUSION: Our results show that machine learning models trained on tabular and graph data can enable objective, personalized, and reproducible prediction of relapse and, therefore, disease outcome in patients with early-stage NSCLC. With further prospective and multisite validation, and additional radiological and molecular data, this prognostic model could potentially serve as a predictive decision support tool for deciding the use of adjuvant treatments in early-stage lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Masculino , Feminino , Idoso , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Recidiva Local de Neoplasia/diagnóstico , Aprendizado de Máquina , Prognóstico
2.
AMIA Annu Symp Proc ; 2021: 853-862, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35308971

RESUMO

Early detection and mitigation of disease recurrence in non-small cell lung cancer (NSCLC) patients is a nontrivial problem that is typically addressed either by rather generic follow-up screening guidelines, self-reporting, simple nomograms, or by models that predict relapse risk in individual patients using statistical analysis of retrospective data. We posit that machine learning models trained on patient data can provide an alternative approach that allows for more efficient development of many complementary models at once, superior accuracy, less dependency on the data collection protocols and increased support for explainability of the predictions. In this preliminary study, we describe an experimental suite of various machine learning models applied on a patient cohort of 2442 early stage NSCLC patients. We discuss the promising results achieved, as well as the lessons we learned while developing this baseline for further, more advanced studies in this area.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/diagnóstico , Estadiamento de Neoplasias , Nomogramas , Prognóstico , Estudos Retrospectivos
3.
Brief Bioinform ; 22(2): 1679-1693, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-32065227

RESUMO

Complex biological systems are traditionally modelled as graphs of interconnected biological entities. These graphs, i.e. biological knowledge graphs, are then processed using graph exploratory approaches to perform different types of analytical and predictive tasks. Despite the high predictive accuracy of these approaches, they have limited scalability due to their dependency on time-consuming path exploratory procedures. In recent years, owing to the rapid advances of computational technologies, new approaches for modelling graphs and mining them with high accuracy and scalability have emerged. These approaches, i.e. knowledge graph embedding (KGE) models, operate by learning low-rank vector representations of graph nodes and edges that preserve the graph's inherent structure. These approaches were used to analyse knowledge graphs from different domains where they showed superior performance and accuracy compared to previous graph exploratory approaches. In this work, we study this class of models in the context of biological knowledge graphs and their different applications. We then show how KGE models can be a natural fit for representing complex biological knowledge modelled as graphs. We also discuss their predictive and analytical capabilities in different biology applications. In this regard, we present two example case studies that demonstrate the capabilities of KGE models: prediction of drug-target interactions and polypharmacy side effects. Finally, we analyse different practical considerations for KGEs, and we discuss possible opportunities and challenges related to adopting them for modelling biological systems.


Assuntos
Biologia Computacional/métodos , Redes Neurais de Computação , Algoritmos , Interações Medicamentosas , Humanos , Aprendizado de Máquina
4.
AMIA Jt Summits Transl Sci Proc ; 2020: 449-458, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477666

RESUMO

Polypharmacy is the use of drug combinations and is commonly used for treating complex and terminal diseases. Despite its effectiveness in many cases, it poses high risks of adverse side effects. Polypharmacy side-effects occur due to unwanted interactions of combined drugs, and they can cause severe complications to patients which results in increasing the risks of morbidity and leading to new mortalities. The use of drug polypharmacy is currently in its early stages; thus, the knowledge of their probable side-effects is limited. This encouraged multiple works to investigate machine learning techniques to efficiently and reliably predict adverse effects of drug combinations. In this context, the Decagon model is known to provide state-of-the-art results. It models polypharmacy side-effect data as a knowledge graph and formulates finding possible adverse effects as a link prediction task over the knowledge graph. The link prediction is solved using an embedding model based on graph convolutions. Despite its effectiveness, the Decagon approach still suffers from a high rate of false positives. In this work, we propose a new knowledge graph embedding technique that uses multi-part embedding vectors to predict polypharmacy side-effects. Like in the Decagon model, we model polypharmacy side effects as a knowledge graph. However, we perform the link prediction task using an approach based on tensor decomposition. Our experimental evaluation shows that our approach outperforms the Decagon model with 12% and 16% margins in terms of the area under the ROC and precision recall curves, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA