Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 329: 121963, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37473803

RESUMO

The crosstalk between the renin-angiotensin system and Adenosine monophosphate-activated protein kinase (AMPK) gained significant interest due to their involvement in the pathogenesis of several cardiovascular diseases. Angiotensin II (Ang II) plays a crucial role in developing cardiac remodelling by inducing energy imbalance, inflammation, oxidative and endoplasmic reticulum stress, and transforming growth factor-ß (TGF-ß)-induced fibrosis. Ang II directly or through extracellular signal-regulated kinase (ERK) activation impairs AMPK signalling with well-known antioxidant, anti-inflammatory, and anti-fibrotic effects. AIM: This study aimed to investigate the role of bempedoic acid, a novel antihyperlipidemic drug, in attenuating hypertension-induced cardiac remodelling in rats by modulating Ang II-induced damage and activating the AMPK signalling pathway. METHOD: Sixty adult male Sprague Dawley rats were randomly allocated into the Sham control group, Hypertensive group, Captopril group (30 mg/kg), and Bempedoic acid group (30 mg/kg). Hypertension was induced by left renal artery ligation in all groups except the Sham control group. Treatment with captopril and bempedoic acid started 14 days post-surgy and lasted two weeks. Finally, Hemodynamic measurements and electrocardiographic examination were done followed by heart tissue samples collection for biochemical, histopathological, and immunohistochemical examinations. KEY FINDINGS: Bempedoic acid preserved the cardiac function and electrocardiogram patterns. It inhibited endoplasmic reticulum stress, exhibited antioxidant activity, and increased endothelial nitric oxide synthase activity. Bempedoic acid interfered with ERK signalling pathways, including nuclear factor-κB and TGF-ß, exerting anti-inflammatory and anti-fibrotic effects. SIGNIFICANCE: These findings indicate the cardioprotective and antihypertrophic activity of bempedoic acid, which are suggested to result from energy-independent AMPK downstream signalling activation.


Assuntos
Hipertensão Renovascular , Hipertensão , Ratos , Animais , Masculino , Hipertensão Renovascular/tratamento farmacológico , Angiotensina II/metabolismo , Ratos Sprague-Dawley , Proteínas Quinases Ativadas por AMP/metabolismo , Captopril , Remodelação Ventricular , Hipertensão/induzido quimicamente , Fator de Crescimento Transformador beta/metabolismo
2.
Life Sci ; 320: 121573, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36931497

RESUMO

Angiotensin II (Ang II), the effector of the renin-angiotensin system (RAS), is a key player in the pathogenesis of chronic hypertension, accompanied by vascular tissue resistance, remodelling, and damage. Chronic activation of Ang II receptor 1 (AT-1R) impairs multiple cellular targets implicated in cellular protection and survival, including adenosine Monophosphate-activated protein kinase (AMPK) signalling. In addition, it induces oxidative damage, endoplasmic reticulum (ER) stress, and fibrotic changes in resistance vessels. Our study investigated the antihypertensive and antifibrotic effects of bempedoic acid, a first-in-class antihyperlipidemic drug that targets adenosine triphosphate-citrate lyase enzyme to inhibit cholesterol synthesis. We also studied the modulation of multiple AMPK signalling pathways by bempedoic acid in a chronic hypertension model in rats. Sixty male Sprague-Dawley rats were divided into four groups: sham group, hypertensive group, standard captopril group, and bempedoic treated group. All groups underwent left renal artery ligation except the sham group. Fourteen days post-surgery, captopril and bempedoic acid were administered with a dose of 30 mg/kg/day orally to captopril-standard and bempedoic acid-treated groups for two weeks, respectively. In mesenteric resistance arteries, bempedoic acid activated AMPK energy independently and augmented AMPK multiple cellular targets to adapt to Ang II-induced cellular stress. It exerted antioxidant activity, increased endothelial nitric oxide synthase, and reversed the ER stress. Bempedoic acid maintained vascular integrity and prevented vascular remodelling by inhibiting extracellular signal-regulated kinase (ERK)/transforming growth factor-ß fibrotic pathway. These effects were reflected in the improved hemodynamic measurements.


Assuntos
Angiotensina II , Hipertensão , Ratos , Masculino , Animais , Angiotensina II/metabolismo , Proteínas Quinases Ativadas por AMP , Ratos Sprague-Dawley , Pressão Sanguínea , Captopril/farmacologia , Remodelação Vascular
3.
IUBMB Life ; 72(8): 1787-1798, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32478470

RESUMO

Lead (Pb) is a toxic heavy metal that is harmful to humans, especially male reproductive organs. Luteolin (LUT) is a naturally occurring flavonoid with numerous biological activities. Our aim was to investigate the possible reproprotective effect of LUT against testicular deficits induced by Pb intoxication. In the present study, 28 rats were distributed into 4 groups: control, LUT (50 mg/kg), lead acetate (PbAc, 20 mg/kg), and LUT + PbAc groups, in which rats were pre-treated with LUT 3 hr before PbAc injection. All animals were treated for 7 days. Oxidative stress, inflammatory and apoptotic markers along with histopathological changes have been examined using spectrophotometric, ELISA, real-time PCR, and histopathological methods. PbAc injection elevated Pb concentration in testicular tissue and decreased levels of sex hormones. PbAc intoxication exacerbated lipoperoxidation and nitric oxide formation, depleted superoxide dismutase, and catalase activities along with glutathione and its originated enzymes (glutathione peroxidase and glutathione reductase). At the molecular level, PbAc deactivated nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 in the testicular tissue. In addition, PbAc toxicity induced inflammatory and apoptotic cascades in testicular tissue as evidenced by the increased tumor necrosis factor-alpha, interleukin-1 beta, inducible nitric oxide synthase, Bax, and caspase 3, while Bcl-2 was declined. Histopathological examination of testicular tissue also revealed that PbAc caused degeneration alterations in spermatogenic cells, the spermatogenic epithelial cells were disconnected from the basement membrane, and the seminiferous tubules were vacuolated. Remarkably, pre-treatment with LUT minimized significantly the testicular damage induced by PbAc. Therefore, we conclude that LUT may have a beneficial effect against PbAc-induced testicular injury through preventing oxidative challenge, inflammation, and finally apoptosis.


Assuntos
Heme Oxigenase (Desciclizante)/genética , Luteolina/farmacologia , Fator 2 Relacionado a NF-E2/genética , Testículo/efeitos dos fármacos , Ferimentos e Lesões/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Masculino , Compostos Organometálicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Testículo/lesões , Testículo/patologia , Ferimentos e Lesões/induzido quimicamente , Ferimentos e Lesões/patologia
4.
Life Sci ; 217: 212-221, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30550883

RESUMO

AIMS: Cerebral ischemia reperfusion (I/R) is a neurovascular disease leading to cerebral damage. It was found that postmenopausal women are liable to more dangerous effects than men at same age in stroke. The objective of this study is to investigate the neuroprotective effect of zeranol against cerebral ischemia reperfusion in ovariectomized rats. MAIN METHODS: 36 female wistar rats divided in to 3 groups: sham group, I/R group (where I/R was induced 7 weeks after ovariectomy), zeranol group (0.5 mg/kg every 3 days for 5 weeks before I/R). Cerebral ischemia reperfusion (I/R) was performed by bilateral common carotid artery occlusion then de-ligated to restore blood flow. After 24 h of reperfusion, rats performed cylinder test to evaluate behavioral dysfunction followed by decapitation. Brain tissues were collected for biochemical measures such as oxidative stress marker malondialdehyde, antioxidant markers reduced glutathione, inflammatory markers (interleukin-1 beta, tumor necrosis factor alpha, and inducible nitric oxide synthase), matrix metalloproteinase-9, adenosine triphosphate, brain derived neurotrophic factor, glucose transporter-3, phosphorylated c-AMP response element binding protein and finally nissl staining for histopathological examination. KEY FINDINGS: The zeranol administered group showed a reversal of neuronal damage caused by ischemia evidenced by the decrease in MDA, IL-1ß, TNF-α, and MMP-9 levels, increase GSH, and ATP levels, decrease expression of iNOS in both regions cortex and hippocampus, increase protein level of p-CREB, GLUT-3 and BDNF, increase number of intact neuron cells in both regions and attenuated histological changes in both cortex and hippocampus regions. SIGNIFICANCE: Zeranol has neuroprotective potential against cerebral ischemia reperfusion in ovariectomized rats.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fitoestrógenos/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Zeranol/uso terapêutico , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/análise , Feminino , Mediadores da Inflamação/análise , Mediadores da Inflamação/metabolismo , Metaloproteinase 9 da Matriz/análise , Metaloproteinase 9 da Matriz/metabolismo , Neurogênese/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/análise , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA