Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37896212

RESUMO

The application of micelles as drug delivery systems has gained a great deal of attention as a means to overcome the current several drawbacks present in conventional cancer treatments. In this work, we highlight the comparison of polymeric and monomeric amphiphilic systems with a similar hydrophilic-lipophilic balance (HLB) in terms of their biocompatibility, aggregation behavior in aqueous solution, and potential in solubilizing hydrophobic compounds. The polymeric system consists of non-ionic polymeric amphiphiles synthesized via sequential RAFT polymerization of polyglycerol first-generation [G1] dendron methacrylate and cholesterol methacrylate to obtain poly(G1-polyglycerol dendron methacrylate)-block-poly(cholesterol methacrylate) (pG1MA-b-pCMA). The monomeric system is a polyglycerol second-generation [G2] dendron end-capped to a cholesterol unit. Both amphiphiles form spherical micellar aggregations in aqueous solution, with differences in size and the morphology in which hydrophobic molecules can be encapsulated. The polymeric and monomeric micelles showed a low critical micelle concentration (CMC) of 0.2 and 17 µg/mL, respectively. The results of our cytotoxicity assays showed that the polymeric system has significantly higher cell viability compared to that of the monomeric amphiphiles. The polymeric micelles were implemented as drug delivery systems by encapsulation of the hydrophobic small molecule doxorubicin, achieving a loading capacity of 4%. In summary, the results of this study reveal that using cholesterol as a building block for polymer synthesis is a promising method of preparation for efficient drug delivery systems while improving the cell viability of monomeric cholesterol.

2.
Int J Pharm ; 642: 123158, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37336299

RESUMO

Induced angiogenesis, a specific hallmark of cancer, plays a vital role in tumor progression and can be targeted by inhibitors like sunitinib. Sunitinib is a small hydrophobic molecule suffering from low bioavailability and a short half-life in the bloodstream. To overcome these drawbacks, suitable drug delivery systems need to be developed. In this work dendritic polyglycerol (dPG), a well-known polymer, was functionalized with a sheddable shell. Therefore, aliphatic chains of different lengths (C5, C9, C11) were coupled to dPG through a cleavable ester bond. To restore water solubility and improve tumor targeting, the surface was decorated with sulfate groups. The resulting shell-sheddable dPG sulfates were characterized and evaluated regarding their loading capacity and biocompatibility in cell culture. The nine-carbon chain derivative (dPG-TNS) was selected as the best candidate for further experiments due to its high drug loading capacity (20 wt%), and a sustained release in vitro. The cellular biocompatibility of the blank carrier up to 1 mg/mL was confirmed after 24 h incubation on HeLa cells. Furthermore, the shell-cleavability of dPG-TNS under different physiological conditions was shown in a degradation study over four weeks. The activity of sunitinib-loaded dPG-TNS was demonstrated in a tube formation assay on Human umbilical vein endothelial cells (HUVECs). Our results suggest that the drug-loaded nanocarrier is a promising candidate to be further investigated in tumor treatments, as it shows similar efficacy to free sunitinib while overcoming its limitations.


Assuntos
Células Endoteliais , Sulfatos , Humanos , Sunitinibe , Células HeLa , Polímeros/química , Linhagem Celular Tumoral
3.
ACS Biomater Sci Eng ; 7(6): 2569-2579, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34061498

RESUMO

Targeted delivery and extended blood circulation of anticancer drugs have been the challenges for decreasing the adverse side effects and improving the therapeutic efficiency in cancer chemotherapy. Herein, we present a drug delivery system (DDS) based on biodegradable dendritic polyglycerol sulfate-bearing poly(caprolactone) (dPGS-PCL) chains, which has been synthesized on 20 g scale using a straightforward two-step protocol. In vivo fluorescence imaging demonstrated a significant accumulation of the DDS in the tumor environment. Sunitinib, an anticancer drug, was loaded into the DDS and the drug-induced toxicity was investigated in vitro and in vivo. The drug encapsulated in dPGS-PCL and the free drug showed similar toxicities in A431 and HT-29 cells, and the cellular uptake was comparable. The straightforward and large-scale synthesis, the organic solvent-free drug-loading approach, together with the tumor targetability of the biodegradable dendritic polyglycerols, render this copolymer a promising candidate for targeted cancer nanomedicine drug delivery systems.


Assuntos
Antineoplásicos , Citostáticos , Neoplasias , Glicerol , Humanos , Neoplasias/tratamento farmacológico , Polímeros , Sulfatos
4.
Polymers (Basel) ; 13(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806866

RESUMO

Biocompatible polymers with the ability to load and release a cargo at the site of action in a smart response to stimuli have attracted great attention in the field of drug delivery and cancer therapy. In this work, we synthesize a dual-responsive dendritic polyglycerol sulfate (DR-dPGS) drug delivery system by copolymerization of glycidol, ε-caprolactone and an epoxide monomer bearing a disulfide bond (SSG), followed by sulfation of terminal hydroxyl groups of the copolymer. The effect of different catalysts, including Lewis acids and organic bases, on the molecular weight, monomer content and polymer structure was investigated. The degradation of the polymer backbone was proven in presence of reducing agents and candida antarctica Lipase B (CALB) enzyme, which results in the cleavage of the disulfides and ester bonds, respectively. The hydrophobic anticancer drug Doxorubicin (DOX) was loaded in the polymer and the kinetic assessment showed an enhanced drug release with glutathione (GSH) or CALB as compared to controls and a synergistic effect of a combination of both stimuli. Cell uptake was studied by using confocal laser scanning microscopy with HeLa cells and showed the uptake of the Dox-loaded carriers and the release of the drug into the nucleus. Cytotoxicity tests with three different cancer cell lines showed good tolerability of the polymers of as high concentrations as 1 mg mL-1, while cancer cell growth was efficiently inhibited by DR-dPGS@Dox.

5.
Biomacromolecules ; 19(12): 4524-4533, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30412396

RESUMO

Inflammatory processes are beneficial responses to overcome injury or illness. Knowledge of the underlying mechanisms allows for a specific treatment. Thus, synthetic systems can be generated for a targeted interaction. In this context, dendritic polyglycerol sulfates (dPGS) have been investigated as anti-inflammatory compounds. Biodegradable systems are required to prevent compound accumulation in the body. Here we present biodegradable analogs of dPGS based on hyperbranched poly(glycidol- co-caprolactone) bearing a hydrophilic sulfate outer shell (hPG- co-PCLS). The copolymers were investigated regarding their physical and chemical properties. The cytocompatibility was confirmed using A549, Caco-2, and HaCaT cells. Internalization of hPG- co-PCLS by A549 and Caco-2 cells was observed as well. Moreover, we demonstrated that hPG- co-PCLS acted as a competitive inhibitor of the leukocytic cell adhesion receptor L-selectin. Further, a reduction of complement activity was observed. These new biodegradable dPGS analogs are therefore attractive for therapeutic applications regarding inflammatory diseases.


Assuntos
Anti-Inflamatórios/química , Plásticos Biodegradáveis/química , Glicerol/química , Inflamação/tratamento farmacológico , Polímeros/química , Sulfatos/química , Células A549 , Células CACO-2 , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Selectina L/química , Leucócitos/química , Leucócitos/efeitos dos fármacos
6.
J Mater Chem B ; 3(19): 3896-3921, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32262612

RESUMO

Despite extensive investigations in the field of cancer diagnosis and therapy in recent decades, cancer is still the major cause of morbidity and mortality all over the world. Recently, with the advancement of nanotechnology, the design and preparation of efficient nano-sized structures with the potential for diagnosis and treatment of cancer have been proposed. Among the different types of nano-sized materials, biocompatible polymers seem to be innovative tools with huge potential for cancer treatment. Advances in polymer chemistry and the application of various organic reactions have enabled the design and tailoring of multifunctional polymeric platforms with controllable architectures, with the ability to carry anticancer drugs, labelling probes and targeting agents simultaneously. This review covers the latest advances in the conjugation of the most studied chemotherapeutics (such as doxorubicin, paclitaxel, methotrexate, fluorouracil and cisplatin) to common dendritic polymers, including polyamidoamine dendrimers and hyperbranched polyglycerols (PGs) and their linear analogues, producing fatal weapons against tumors, with a focus on their cytotoxicity, biodistribution and biodegradability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA