Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(8): e2315653121, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346199

RESUMO

Monkeypox virus (MPXV) infections in humans cause neurological disorders while studies of MPXV-infected animals indicate that the virus penetrates the brain. Pyroptosis is an inflammatory type of regulated cell death, resulting from plasma membrane rupture (PMR) due to oligomerization of cleaved gasdermins to cause membrane pore formation. Herein, we investigated the human neural cell tropism of MPXV compared to another orthopoxvirus, vaccinia virus (VACV), as well as its effects on immune responses and cell death. Astrocytes were most permissive to MPXV (and VACV) infections, followed by microglia and oligodendrocytes, with minimal infection of neurons based on plaque assays. Aberrant morphological changes were evident in MPXV-infected astrocytes that were accompanied with viral protein (I3) immunolabelling and detection of over 125 MPXV-encoded proteins in cell lysates by mass spectrometry. MPXV- and VACV-infected astrocytes showed increased expression of immune gene transcripts (IL12, IRF3, IL1B, TNFA, CASP1, and GSDMB). However, MPXV infection of astrocytes specifically induced proteolytic cleavage of gasdermin B (GSDMB) (50 kDa), evident by the appearance of cleaved N-terminal-GSDMB (30 kDa) and C-terminal- GSDMB (18 kDa) fragments. GSDMB cleavage was associated with release of lactate dehydrogenase and increased cellular nucleic acid staining, indicative of PMR. Pre-treatment with dimethyl fumarate reduced cleavage of GSDMB and associated PMR in MPXV-infected astrocytes. Human astrocytes support productive MPXV infection, resulting in inflammatory gene induction with accompanying GSDMB-mediated pyroptosis. These findings clarify the recently recognized neuropathogenic effects of MPXV in humans while also offering potential therapeutic options.


Assuntos
Monkeypox virus , Mpox , Animais , Humanos , Monkeypox virus/fisiologia , Piroptose , Astrócitos , Gasderminas
2.
Brain Behav Immun ; 115: 374-393, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914099

RESUMO

Neuroinflammation coupled with demyelination and neuro-axonal damage in the central nervous system (CNS) contribute to disease advancement in progressive multiple sclerosis (P-MS). Inflammasome activation accompanied by proteolytic cleavage of gasdermin D (GSDMD) results in cellular hyperactivation and lytic death. Using multiple experimental platforms, we investigated the actions of GSDMD within the CNS and its contributions to P-MS. Brain tissues from persons with P-MS showed significantly increased expression of GSDMD, NINJ1, IL-1ß, and -18 within chronic active demyelinating lesions compared to MS normal appearing white matter and nonMS (control) white matter. Conditioned media (CM) from stimulated GSDMD+/+ human macrophages caused significantly greater cytotoxicity of oligodendroglial and neuronal cells, compared to CM from GSDMD-/- macrophages. Oligodendrocytes and CNS macrophages displayed increased Gsdmd immunoreactivity in the central corpus callosum (CCC) of cuprizone (CPZ)-exposed Gsdmd+/+ mice, associated with greater demyelination and reduced oligodendrocyte precursor cell proliferation, compared to CPZ-exposed Gsdmd-/- animals. CPZ-exposed Gsdmd+/+ mice exhibited significantly increased G-ratios and reduced axonal densities in the CCC compared to CPZ-exposed Gsdmd-/- mice. Proteomic analyses revealed increased brain complement C1q proteins and hexokinases in CPZ-exposed Gsdmd-/- animals. [18F]FDG PET imaging showed increased glucose metabolism in the hippocampus and whole brain with intact neurobehavioral performance in Gsdmd-/- animals after CPZ exposure. GSDMD activation in CNS macrophages and oligodendrocytes contributes to inflammatory demyelination and neuroaxonal injury, offering mechanistic and potential therapeutic insights into P-MS pathogenesis.


Assuntos
Gasderminas , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Animais , Humanos , Camundongos , Moléculas de Adesão Celular Neuronais , Cuprizona/uso terapêutico , Cuprizona/toxicidade , Modelos Animais de Doenças , Gasderminas/metabolismo , Camundongos Endogâmicos C57BL , Microglia/patologia , Esclerose Múltipla/patologia , Esclerose Múltipla Crônica Progressiva/patologia , Fatores de Crescimento Neural , Oligodendroglia , Proteômica
3.
Viruses ; 15(12)2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38140626

RESUMO

There is currently no cure for HIV infection although adherence to effective antiretroviral therapy (ART) suppresses replication of the virus in blood, increases CD4+ T-cell counts, reverses immunodeficiency, and increases life expectancy. Despite these substantial advances, ART is a lifelong treatment for people with HIV (PWH) and upon cessation or interruption, the virus quickly rebounds in plasma and anatomic sites, including the central nervous system (CNS), resulting in disease progression. With recent advances in quantifying viral burden, detection of genetically intact viral genomes, and isolation of replication-competent virus from brain tissues of PWH receiving ART, it has become apparent that the CNS viral reservoir (largely comprised of macrophage type cells) poses a substantial challenge for HIV cure strategies. Other obstacles impacting the curing of HIV include ageing populations, substance use, comorbidities, limited antiretroviral drug efficacy in CNS cells, and ART-associated neurotoxicity. Herein, we review recent findings, including studies of the proviral integration sites, reservoir decay rates, and new treatment/prevention strategies in the context of the CNS, together with highlighting the next steps for investigations of the CNS as a viral reservoir.


Assuntos
Infecções por HIV , Humanos , Infecções por HIV/tratamento farmacológico , Sistema Nervoso Central , Antirretrovirais/uso terapêutico , Antirretrovirais/farmacologia , Macrófagos , Replicação Viral , Carga Viral , Linfócitos T CD4-Positivos
4.
Brain Behav Immun ; 107: 110-123, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36202168

RESUMO

BACKGROUND: Systemic inflammation accompanies HIV-1 infection, resulting in microbial translocation from different tissues. We investigated interactions between lentivirus infections, neuroinflammation and microbial molecule presence in the brain. METHODS: Brain tissues from adult humans with (n = 22) and without HIV-1 (n = 11) infection as well as adult nonhuman primates (NHPs) with (n = 11) and without (n = 4) SIVmac251 infection were investigated by RT-PCR/ddPCR, immunofluorescence and western blotting. Studies of viral infectivity, host immune gene expression and viability were performed in primary human neural cells. FINDINGS: Among NHPs, SIV DNA quantitation in brain showed increased levels among animals with SIV encephalitis (n = 5) that was associated with bacterial genomic copy number as well as CCR5 and CASP1 expression in brain. Microbial DnaK and peptidoglycan were immunodetected in brains from uninfected and SIV-infected animals, chiefly in glial cells. Human microglia infected by HIV-1 showed increased p24 production after exposure to peptidoglycan that was associated CCR5 induction. HIV-1 Vpr application to human neurons followed by peptidoglycan exposure resulted in reduced mitochondrial function and diminished beta-III tubulin expression. In human brains, bacterial genome copies (250-550 copies/gm of tissue), were correlated with increased bacterial rRNA and GroEL transcript levels in patients with HIV-associated neurocognitive disorders (HAND). Glial cells displayed microbial GroEL and peptidoglycan immunoreactivity accompanied by CCR5 induction in brains from patients with HAND. INTERPRETATION: Increased microbial genomes and proteins were evident in brain tissues from lentivirus-infected humans and animals and associated with neurological disease. Microbial molecule translocation into the brain might exacerbate neuroinflammatory disease severity and represent a driver of lentivirus-associated brain disease.


Assuntos
Infecções por HIV , HIV , Humanos , Doenças Neuroinflamatórias , Transtornos Neurocognitivos , Infecções por HIV/complicações , Encéfalo , Receptores CCR5/genética
5.
mBio ; 12(6): e0278421, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903055

RESUMO

HIV infection persists in different tissue reservoirs among people with HIV (PWH) despite effective antiretroviral therapy (ART). In the brain, lentiviruses replicate principally in microglia and trafficking macrophages. The impact of ART on this viral reservoir is unknown. We investigated the activity of contemporary ART in various models of lentivirus brain infection. HIV-1 RNA and total and integrated DNA were detected in cerebral cortex from all PWH (n = 15), regardless of ART duration or concurrent plasma viral quantity and, interestingly, integrated proviral DNA levels in brain were significantly higher in the aviremic ART-treated group (P < 0.005). Most ART drugs tested (dolutegravir, ritonavir, raltegravir, and emtricitabine) displayed significantly lower 50% effective concentration (EC50) values in lymphocytes than in microglia, except tenofovir, which showed 1.5-fold greater activity in microglia (P < 0.05). In SIV-infected Chinese rhesus macaques, despite receiving suppressive (n = 7) or interrupted (n = 8) ART, brain tissues had similar SIV-encoded RNA and total and integrated DNA levels compared to brains from infected animals without ART (n = 3). SIV and HIV-1 capsid antigens were immunodetected in brain, principally in microglia/macrophages, regardless of ART duration and outcome. Antiviral immune responses were comparable in the brains of ART-treated and untreated HIV- and SIV-infected hosts. Both HIV-1 and SIV persist in brain tissues despite contemporary ART, with undetectable virus in blood. ART interruption exerted minimal effect on the SIV brain reservoir and did not alter the neuroimmune response profile. These studies underscore the importance of augmenting ART potency in different tissue compartments. IMPORTANCE Antiretroviral therapy (ART) suppresses HIV-1 in plasma and CSF to undetectable levels. However, the impact of contemporary ART on HIV-1 brain reservoirs remains uncertain. An active viral reservoir in the brain during ART could lead to rebound systemic infection after cessation of therapy, development of drug resistance mutations, and neurological disease. ART's impact, including its interruption, on brain proviral DNA remains unclear. The present studies show that in different experimental platforms, contemporary ART did not suppress viral burden in the brain, regardless of ART component regimen, the duration of therapy, and its interruption. Thus, new strategies for effective HIV-1 suppression in the brain are imperative to achieve sustained HIV suppression.


Assuntos
Fármacos Anti-HIV/farmacologia , Encéfalo/virologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Animais , Encéfalo/imunologia , Modelos Animais de Doenças , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Macaca mulatta , Macrófagos/imunologia , Macrófagos/virologia , Microglia/virologia , Mutação/efeitos dos fármacos , Provírus/efeitos dos fármacos , Provírus/genética , Provírus/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/fisiologia , Latência Viral/efeitos dos fármacos
6.
Nucleic Acids Res ; 48(3): 1353-1371, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31943071

RESUMO

The human apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (APOBEC3, A3) family member proteins can deaminate cytosines in single-strand (ss) DNA, which restricts human immunodeficiency virus type 1 (HIV-1), retrotransposons, and other viruses such as hepatitis B virus, but can cause a mutator phenotype in many cancers. While structural information exists for several A3 proteins, the precise details regarding deamination target selection are not fully understood. Here, we report the first parallel, comparative analysis of site selection of A3 deamination using six of the seven purified A3 member enzymes, oligonucleotides having 5'TC3' or 5'CT3' dinucleotide target sites, and different flanking bases within diverse DNA secondary structures. A3A, A3F and A3H were observed to have strong preferences toward the TC target flanked by A or T, while all examined A3 proteins did not show a preference for a TC target flanked by a G. We observed that the TC target was strongly preferred in ssDNA regions rather than dsDNA, loop or bulge regions, with flanking bases influencing the degree of preference. CT was also shown to be a potential deamination target. Taken together, our observations provide new insights into A3 enzyme target site selection and how A3 mutagenesis impacts mutation rates.


Assuntos
Citidina Desaminase/genética , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Desaminação/genética , Desaminases APOBEC , Sítios de Ligação/genética , Linhagem Celular , Citidina Desaminase/química , Citosina Desaminase/química , Citosina Desaminase/genética , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , HIV-1/genética , HIV-1/patogenicidade , Vírus da Hepatite B/genética , Humanos , Mutagênese/genética , Conformação de Ácido Nucleico , Estrutura Secundária de Proteína , Retroelementos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA