Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Med Chem ; 15(3): 788-808, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516587

RESUMO

Indole is a prestigious heterocyclic skeleton widely found in both naturally-occurring and biologically-active compounds. Pharmaceutical agents containing an indole skeleton in their framework possess a wide range of pharmacological properties, including antiviral, antitumor, analgesic, and other therapeutic activities, and many indole-containing drugs have been proven to have excellent pharmacokinetic and pharmacological effects. Over the past few decades, the FDA has approved over 40 indole-containing drugs for the treatment of various clinical conditions, and the development of indole-related drugs has attracted significant attention from medicinal chemists. This review aims to provide an overview of all the approved drugs that contain an indole nucleus, focusing on their targets, pharmacological activities, and SAR studies.

2.
Biomolecules ; 13(10)2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37892167

RESUMO

In this study, we synthesized benzodioxol carboxamide derivatives and investigated their antidiabetic potential. The synthesized compounds (Ia-Ic and IIa-IId) underwent characterization via HRMS, 1H-, 13CAPT-NMR, and MicroED. Their efficacy against α-amylase was assessed in vitro, while MTS assays were employed to gauge cytotoxicity across cancer and normal cell lines. Additionally, the antidiabetic impact of compound IIc was evaluated in vivo using a streptozotocin-induced diabetic mice model. Notably, IIa and IIc displayed potent α-amylase inhibition (IC50 values of 0.85 and 0.68 µM, respectively) while exhibiting a negligible effect on the Hek293t normal cell line (IC50 > 150 µM), suggesting their safety. Compound IId demonstrated significant activity against four cancer cell lines (26-65 µM). In vivo experiments revealed that five doses of IIc substantially reduced mice blood glucose levels from 252.2 mg/dL to 173.8 mg/dL in contrast to the control group. The compelling in vitro anticancer efficacy of IIc and its safety for normal cells underscores the need for further in vivo assessment of this promising compound. This research highlights the potential of benzodioxol derivatives as candidates for the future development of synthetic antidiabetic drugs.


Assuntos
Diabetes Mellitus Experimental , Neoplasias , Camundongos , Animais , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Diabetes Mellitus Experimental/tratamento farmacológico , Células HEK293 , Estreptozocina , alfa-Amilases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA