Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hypertension ; 79(1): 79-92, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34739767

RESUMO

Clinical trials of Dll4 (Delta-like 4) neutralizing antibodies (Dll4nAbs) in cancer patients are ongoing. Surprisingly, pulmonary hypertension (PH) occurs in 14% to 18% of patients treated with Dll4nAbs, but the mechanisms have not been studied. Here, PH progression was measured in mice treated with Dll4nAbs. We detected Notch signaling in lung tissues and analyzed pulmonary vascular permeability and inflammation. Notch target gene array was performed on adult human pulmonary microvascular endothelial cells (ECs) after inhibiting Notch cleavage. Similar mechanisms were studied in PH mouse models and pulmonary arterial hypertension patients. The rescue effects of constitutively activated Notch1 in vivo were also measured. We observed that Dll4nAbs induced PH in mice as indicated by significantly increased right ventricular systolic pressure, as well as pulmonary vascular and right ventricular remodeling. Mechanistically, Dll4nAbs inhibited Notch1 cleavage and subsequently impaired lung endothelial barrier function and increased immune cell infiltration in vessel walls. In vitro, Notch targeted genes' expression related to cell growth and inflammation was decreased in human pulmonary microvascular ECs after the Notch1 inactivation. In lungs of PH mouse models and pulmonary arterial hypertension patients, Notch1 cleavage was inhibited. Consistently, EC cell-cell junction was leaky, and immune cell infiltration increased in PH mouse models. Overexpression activated Notch1-attenuated progression of PH in mice. In conclusion, Dll4nAbs led to PH development in mice by impaired EC barrier function and increased immune cell infiltration through inhibition of Notch1 cleavage in lung ECs. Reduced Notch1 cleavage in lung ECs could be an underlying mechanism of PH pathogenesis.


Assuntos
Hipertensão Pulmonar/metabolismo , Pulmão/metabolismo , Receptor Notch1/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Células Endoteliais/metabolismo , Hipertensão Pulmonar/genética , Masculino , Camundongos , Artéria Pulmonar/metabolismo , Receptor Notch1/genética , Transdução de Sinais/genética
2.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34312235

RESUMO

Abdominal aortic aneurysm (AAA) is characterized by aorta dilation due to wall degeneration, which mostly occurs in elderly males. Vascular aging is implicated in degenerative vascular pathologies, including AAA. Cyclic nucleotide phosphodiesterases, by hydrolyzing cyclic nucleotides, play critical roles in regulating vascular structure remodeling and function. Cyclic nucleotide phosphodiesterase 1C (PDE1C) expression is induced in dedifferentiated and aging vascular smooth muscle cells (SMCs), while little is known about the role of PDE1C in aneurysm. We observed that PDE1C was not expressed in normal aorta but highly induced in SMC-like cells in human and murine AAA. In mouse AAA models induced by Angiotensin II or periaortic elastase, PDE1C deficiency significantly decreased AAA incidence, aortic dilation, and elastin degradation, which supported a causative role of PDE1C in AAA development in vivo. Pharmacological inhibition of PDE1C also significantly suppressed preestablished AAA. We showed that PDE1C depletion antagonized SMC senescence in vitro and/or in vivo, as assessed by multiple senescence biomarkers, including senescence-associated ß-galactosidase activity, γ-H2AX foci number, and p21 protein level. Interestingly, the role of PDE1C in SMC senescence in vitro and in vivo was dependent on Sirtuin 1 (SIRT1). Mechanistic studies further showed that cAMP derived from PDE1C inhibition stimulated SIRT1 activation, likely through a direct interaction between cAMP and SIRT1, which leads to subsequent up-regulation of SIRT1 expression. Our findings provide evidence that PDE1C elevation links SMC senescence to AAA development in both experimental animal models and human AAA, suggesting therapeutical significance of PDE1C as a potential target against aortic aneurysms.


Assuntos
Aneurisma da Aorta Abdominal/enzimologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Angiotensina II/toxicidade , Animais , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Biomarcadores , Senescência Celular , AMP Cíclico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/genética , Inibidor de Quinase Dependente de Ciclina p21 , Histonas , Masculino , Camundongos , Camundongos Knockout para ApoE , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Regulação para Cima , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
3.
Clin Sci (Lond) ; 134(22): 2959-2976, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33111936

RESUMO

Abdominal aortic aneurysm (AAA), commonly occurring in the aged population, is a degenerative disease that dilate and weaken infrarenal aorta due to progressive degeneration of aortic wall integrity. Vinpocetine, a derivative of alkaloid vincamine, has long been used for cerebrovascular disorders and cognitive impairment in the aged population. Recent studies have indicated that vinpocetine antagonizes occlusive vascular disorders such as intimal hyperplasia and atherosclerosis. However, its role in vascular degenerative disease AAA remains unexplored. Herein, we determined the effect of vinpocetine on the formation of AAA as well as the intervention of pre-existing moderate AAA. AAA was induced by periaortic elastase application in C57BL/6J mice. Systemic vinpocetine treatment was applied daily via intraperitoneal injection. We showed that vinpocetine pre-treatment remarkably attenuated aneurysmal dilation assessed by diameter and volume. More importantly, vinpocetine also significantly suppressed the progression of pre-existing moderate AAA in a post-intervention model. Vinpocetine improved multiple cellular and molecular changes associated with AAA, such as elastin degradation, media smooth muscle cell depletion, collagen fibers remodeling and macrophage infiltration in aneurysmal tissues. Vinpocetine potently suppressed tumor necrosis factor-α-induced nuclear factor kappa-light-chain-enhancer of activated B cells activation and proinflammatory mediator expression in primary cultured macrophages in vitro, as well as in the aorta wall in vivo, suggesting vinpocetine conferred anti-AAA effect at least partially via the inhibition of inflammation. Taken together, our findings reveal a novel role of vinpocetine in AAA formation, development and progression. Given the excellent safety profile of vinpocetine, the present study suggests vinpocetine may be a novel therapeutic agent for AAA prevention and treatment.


Assuntos
Aneurisma da Aorta Abdominal/tratamento farmacológico , Substâncias Protetoras/uso terapêutico , Alcaloides de Vinca/uso terapêutico , Animais , Aneurisma da Aorta Abdominal/patologia , Células Cultivadas , Dilatação Patológica , Progressão da Doença , Elastina/metabolismo , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/metabolismo , NF-kappa B/metabolismo , Substâncias Protetoras/farmacologia , Proteoglicanas/metabolismo , Proteólise/efeitos dos fármacos , Alcaloides de Vinca/farmacologia
4.
Aging (Albany NY) ; 11(24): 11955-11974, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852838

RESUMO

Platelets have central roles in both immune responses and development. Stimulated platelets express leukocyte adhesion molecules and release numerous immune modulatory factors that recruit and activate leukocytes, both at the sites of activation and distantly. Monocytes are innate immune cells with dynamic immune modulatory functions that change during the aging process, a phenomenon termed "inflammaging". We have previously shown that platelets are a major source of plasma beta-2 microglobulin (ß2M) and that ß2M induced a monocyte pro-inflammatory phenotype. Plasma ß2M increases with age and is a pro-aging factor. We hypothesized that platelet derived ß2M regulates monocyte phenotypes in the context of aging. Using wild-type (WT) and platelet specific ß2M knockout mice (Plt-ß2M-/-) mice, we found that plasma ß2M increased with age and correlated with increased circulating Ly6CHi monocytes. However, aged Plt-ß2M-/- mice had significantly fewer Ly6CHi monocytes compared to WT mice. Quantitative real-time PCR of circulating monocytes showed that WT mouse monocytes were more "pro-inflammatory" with age, while Plt-ß2M-/- derived monocytes adopted a "pro-reparative" phenotype. Older Plt-ß2M-/- mice had a significant decline in heart function compared to age matched WT mice, as well as increased cardiac fibrosis and pro-fibrotic markers. These data suggest that platelet-derived ß2M regulates age associated monocyte polarization, and a loss of platelet derived ß2M shifted monocytes and macrophages to a pro-reparative phenotype and increased pro-fibrotic cardiac responses. Platelet regulation of monocyte phenotypes via ß2M may maintain a balance between inflammatory and reparative signals that affects age related physiologic outcomes.


Assuntos
Envelhecimento/imunologia , Envelhecimento/metabolismo , Plaquetas/metabolismo , Macrófagos/metabolismo , Microglobulina beta-2/metabolismo , Envelhecimento/patologia , Animais , Plaquetas/imunologia , Fibrose/imunologia , Fibrose/patologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Monócitos/imunologia , Monócitos/metabolismo , Miocárdio/patologia , Fenótipo
5.
Circulation ; 138(18): 1988-2002, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29871977

RESUMO

BACKGROUND: cAMP plays a critical role in regulating cardiomyocyte survival. Various cAMP signaling pathways behave distinctly or in opposition. We have previously reported that activation of cAMP hydrolysis by cyclic nucleotide phosphodiesterase 1C (PDE1C) promotes cardiomyocytes death/apoptosis, yet the underlying molecular mechanism remains unknown. In this study, we aimed to identify the specific cAMP signaling pathway modulated by PDE1C and determine the mechanism by which Ca2+/calmodulin-stimulated PDE1C is activated. METHODS: To study cardiomyocyte death/apoptosis, we used both isolated mouse adult cardiomyocytes in vitro and doxorubicin-induced cardiotoxicity in vivo. We used a variety of pharmacological activators and inhibitors as well as genetically engineered molecular tools to manipulate the expression and activity of proteins of interest. RESULTS: We found that the protective effect of PDE1C inhibition/deficiency on Ang II or doxorubicin-induced cardiomyocyte death/apoptosis is dependent on cAMP-generating adenosine A2 receptors (A2Rs), suggesting that PDE1C's cAMP-hydrolyzing activity selectively modulates A2R-cAMP signaling in cardiomyocytes. In addition, we found that the effects of PDE1C activation on Ang II-mediated cAMP reduction and cardiomyocyte death are dependent on transient receptor potential-canonical (TRPC) channels, in particular TRPC3. We also observed synergistic protective effects on cardiomyocyte survival from the combination of A2R stimulation together with PDE1 or TRPC inhibition. Coimmunostaining and coimmunoprecipitation studies showed that PDE1C is localized in proximity with A2R and TRPC3 in the plasma membrane and perhaps T tubules. It is important to note that we found that doxorubicin-induced cardiac toxicity and dysfunction in mice are attenuated by the PDE1 inhibitor IC86340 or in PDE1C knockout mice, and this protective effect is significantly diminished by A2R antagonism. CONCLUSIONS: We have characterized a novel multiprotein complex comprised of A2R, PDE1C, and TRPC3, in which PDE1C is activated by TRPC3-derived Ca2+, thereby antagonizing A2R-cAMP signaling and promoting cardiomyocyte death/apoptosis. Targeting these molecules individually or in combination may represent a compelling therapeutic strategy for potentiating cardiomyocyte survival.


Assuntos
AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/metabolismo , Receptores A2 de Adenosina/metabolismo , Canais de Cátion TRPC/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Angiotensina II/toxicidade , Animais , Apoptose/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/antagonistas & inibidores , Doxorrubicina/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores A2 de Adenosina/química , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/genética
6.
Arterioscler Thromb Vasc Biol ; 38(7): 1594-1606, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29724818

RESUMO

OBJECTIVE: Reduced blood flow and tissue oxygen tension conditions result from thrombotic and vascular diseases such as myocardial infarction, stroke, and peripheral vascular disease. It is largely assumed that while platelet activation is increased by an acute vascular event, chronic vascular inflammation, and ischemia, the platelet activation pathways and responses are not themselves changed by the disease process. We, therefore, sought to determine whether the platelet phenotype is altered by hypoxic and ischemic conditions. APPROACH AND RESULTS: In a cohort of patients with metabolic and peripheral artery disease, platelet activity was enhanced, and inhibition with oral antiplatelet agents was impaired compared with platelets from control subjects, suggesting a difference in platelet phenotype caused by the disease. Isolated murine and human platelets exposed to reduced oxygen (hypoxia chamber, 5% O2) had increased expression of some proteins that augment platelet activation compared with platelets in normoxic conditions (21% O2). Using a murine model of critical limb ischemia, platelet activity was increased even 2 weeks postsurgery compared with sham surgery mice. This effect was partly inhibited in platelet-specific ERK5 (extracellular regulated protein kinase 5) knockout mice. CONCLUSIONS: These findings suggest that ischemic disease changes the platelet phenotype and alters platelet agonist responses because of changes in the expression of signal transduction pathway proteins. Platelet phenotype and function should, therefore, be better characterized in ischemic and hypoxic diseases to understand the benefits and limitations of antiplatelet therapy.


Assuntos
Plaquetas/metabolismo , Hipóxia/sangue , Isquemia/sangue , Oxigênio/sangue , Doença Arterial Periférica/sangue , Ativação Plaquetária , Animais , Plaquetas/efeitos dos fármacos , Estudos de Casos e Controles , Estado Terminal , Modelos Animais de Doenças , Humanos , Hipóxia/fisiopatologia , Isquemia/tratamento farmacológico , Isquemia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 7 Ativada por Mitógeno/sangue , Proteína Quinase 7 Ativada por Mitógeno/genética , Doença Arterial Periférica/tratamento farmacológico , Doença Arterial Periférica/fisiopatologia , Fenótipo , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/uso terapêutico , Pneumonectomia , Transdução de Sinais
7.
Arterioscler Thromb Vasc Biol ; 34(2): 419-26, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24265417

RESUMO

OBJECTIVE: Recent evidence suggests G-protein-coupled receptor-2-interacting protein-1 (GIT1) overexpression in several human metastatic tumors, including breast, lung, and prostate. Tumor metastasis is associated with an increase in angiogenesis. We have showed previously that GIT1 is required for postnatal angiogenesis during lung development. However, the functional role of GIT1 in pathological angiogenesis during tumor growth is unknown. APPROACH AND RESULTS: In the present study, we show inhibition of angiogenesis in matrigel implants as well as reduced tumor angiogenesis and melanoma tumor growth in GIT1-knockout mice. We demonstrate that this is a result of impaired directional migration of GIT1-depleted endothelial cells toward a vascular endothelial growth factor gradient. Cortactin-mediated lamellipodia formation in the leading edge is critical for directional migration. We observed a significant reduction in cortactin localization and lamellipodia formation in the leading edge of GIT1-depleted endothelial cells. We specifically identified that the Spa homology domain (aa 250-420) of GIT1 is required for GIT1-cortactin complex localization to the leading edge. The mechanisms involved extracellular signal-regulated kinases 1 and 2-mediated Cortactin-S405 phosphorylation and activation of Rac1/Cdc42. Finally, using gain of function studies, we show that a constitutively active mutant of cortactin restored directional migration of GIT1-depleted cells. CONCLUSION: Our data demonstrated that a GIT1-cortactin association through GIT1-Spa homology domain is required for cortactin localization to the leading edge and is essential for endothelial cell directional migration and tumor angiogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Movimento Celular , Cortactina/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Melanoma Experimental/metabolismo , Neovascularização Patológica , Neovascularização Fisiológica , Pseudópodes/metabolismo , Neoplasias de Tecidos Moles/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Cortactina/genética , Proteínas Ativadoras de GTPase/deficiência , Proteínas Ativadoras de GTPase/genética , Células HEK293 , Humanos , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Transdução de Sinais , Neoplasias de Tecidos Moles/irrigação sanguínea , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/patologia , Fatores de Tempo , Transfecção , Carga Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
8.
J Mol Cell Cardiol ; 51(5): 769-76, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21756914

RESUMO

G-protein-coupled receptor (GPCR)-kinase interacting protein-1 (GIT1) is a multi-function scaffold protein. However, little is known about its physiological role in the heart. Here we sought to identify the cardiac function of GIT1. Global GIT1 knockout (KO) mice were generated and exhibited significant cardiac hypertrophy that progressed to heart failure. Electron microscopy revealed that the hearts of GIT1 KO mice demonstrated significant morphological abnormities in mitochondria, including decreased mitochondrial volume density, cristae density and increased vacuoles. Moreover, mitochondrial biogenesis-related gene peroxisome proliferator-activated receptor γ (PPARγ) co-activator-1α (PGC-1α), PGC-1ß, mitochondrial transcription factor A (Tfam) expression, and total mitochondrial DNA were remarkably decreased in hearts of GIT1 KO mice. These animals also had impaired mitochondrial function, as evidenced by reduced ATP production and dissipated mitochondrial membrane potential (Ψ(m)) in adult cardiomyocytes. Concordant with these mitochondrial observations, GIT1 KO mice showed enhanced cardiomyocyte apoptosis and cardiac dysfunction. In conclusion, our findings identify GIT1 as a new regulator of mitochondrial biogenesis and function, which is necessary for postnatal cardiac maturation.


Assuntos
Trifosfato de Adenosina/biossíntese , Proteínas de Ciclo Celular , Proteínas Ativadoras de GTPase , Insuficiência Cardíaca/metabolismo , Potencial da Membrana Mitocondrial/genética , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/genética , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Proteínas Ativadoras de GTPase/deficiência , Proteínas Ativadoras de GTPase/genética , Insuficiência Cardíaca/genética , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/ultraestrutura , PPAR gama/genética , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Arterioscler Thromb Vasc Biol ; 31(5): 1116-23, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21330604

RESUMO

OBJECTIVE: Cyclophilin A (CyPA, encoded by Ppia) is a proinflammatory protein secreted in response to oxidative stress in mice and humans. We recently demonstrated that CyPA increased angiotensin II (Ang II)-induced reactive oxygen species (ROS) production in the aortas of apolipoprotein E (Apoe)-/- mice. In this study, we sought to evaluate the role of CyPA in Ang II-induced cardiac hypertrophy. METHODS AND RESULTS: Cardiac hypertrophy was not significantly different between Ppia+/+ and Ppia-/- mice infused with Ang II (1000 ng/min per kg for 4 weeks). Therefore, we investigated the effect of CyPA under conditions of high ROS and inflammation using the Apoe-/- mice. In contrast to Apoe-/- mice, Apoe-/-Ppia-/- mice exhibited significantly less Ang II-induced cardiac hypertrophy. Bone marrow cell transplantation showed that CyPA in cells intrinsic to the heart plays an important role in the cardiac hypertrophic response. Ang II-induced ROS production, cardiac fibroblast proliferation, and cardiac fibroblast migration were markedly decreased in Apoe-/-Ppia-/- cardiac fibroblasts. Furthermore, CyPA directly induced the hypertrophy of cultured neonatal cardiac myocytes. CONCLUSIONS: CyPA is required for Ang II-mediated cardiac hypertrophy by directly potentiating ROS production, stimulating the proliferation and migration of cardiac fibroblasts, and promoting cardiac myocyte hypertrophy.


Assuntos
Apolipoproteínas E/deficiência , Cardiomegalia/enzimologia , Ciclofilina A/metabolismo , Miocárdio/enzimologia , Angiotensina II , Animais , Animais Recém-Nascidos , Apolipoproteínas E/genética , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/imunologia , Cardiomegalia/patologia , Cardiomegalia/prevenção & controle , Comunicação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Ciclofilina A/deficiência , Ciclofilina A/genética , Modelos Animais de Doenças , Fibroblastos/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/imunologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/metabolismo , Fatores de Tempo
10.
J Exp Med ; 208(1): 53-66, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21173104

RESUMO

Cyclophilin A (CyPA; encoded by Ppia) is a ubiquitously expressed protein secreted in response to inflammatory stimuli. CyPA stimulates vascular smooth muscle cell migration and proliferation, endothelial cell adhesion molecule expression, and inflammatory cell chemotaxis. Given these activities, we hypothesized that CyPA would promote atherosclerosis. Apolipoprotein E-deficient (Apoe(-/-)) mice fed a high-cholesterol diet for 16 wk developed more severe atherosclerosis compared with Apoe(-/-)Ppia(-/-) mice. Moreover, CyPA deficiency was associated with decreased low-density lipoprotein uptake, VCAM-1 (vascular cell adhesion molecule 1) expression, apoptosis, and increased eNOS (endothelial nitric oxide synthase) expression. To understand the vascular role of CyPA in atherosclerosis development, bone marrow (BM) cell transplantation was performed. Atherosclerosis was greater in Apoe(-/-) mice compared with Apoe(-/-)Ppia(-/-) mice after reconstitution with CyPA(+/+) BM cells, indicating that vascular-derived CyPA plays a crucial role in the progression of atherosclerosis. These data define a role for CyPA in atherosclerosis and suggest CyPA as a target for cardiovascular therapies.


Assuntos
Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Ciclofilina A/metabolismo , Animais , Apolipoproteínas E/deficiência , Aterosclerose/imunologia , Aterosclerose/patologia , Movimento Celular , Ciclofilina A/genética , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/metabolismo , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo
11.
Circulation ; 119(11): 1524-32, 2009 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-19273721

RESUMO

BACKGROUND: The G-protein-coupled receptor kinase interacting protein-1 (GIT1) is a multidomain scaffold protein that participates in many cellular functions including receptor internalization, focal adhesion remodeling, and signaling by both G-protein-coupled receptors and tyrosine kinase receptors. However, there have been no in vivo studies of GIT1 function to date. METHODS AND RESULTS: To determine essential functions of GIT1 in vivo, we generated a traditional GIT1 knockout mouse. GIT1 knockout mice exhibited approximately 60% perinatal mortality. Pathological examination showed that the major abnormality in GIT1 knockout mice was impaired lung development characterized by markedly reduced numbers of pulmonary blood vessels and increased alveolar spaces. Given that vascular endothelial growth factor (VEGF) is essential for pulmonary vascular development, we investigated the role of GIT1 in VEGF signaling in the lung and cultured endothelial cells. Because activation of phospholipase-Cgamma (PLCgamma) and extracellular signal-regulated kinases 1/2 (ERK1/2) by angiotensin II requires GIT1, we hypothesized that GIT1 mediates VEGF-dependent pulmonary angiogenesis by modulating PLCgamma and ERK1/2 activity in endothelial cells. In cultured endothelial cells, knockdown of GIT1 decreased VEGF-mediated phosphorylation of PLCgamma and ERK1/2. PLCgamma and ERK1/2 activity in lungs from GIT1 knockout mice was reduced postnatally. CONCLUSIONS: Our data support a critical role for GIT1 in pulmonary vascular development by regulating VEGF-induced PLCgamma and ERK1/2 activation.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Neovascularização Fisiológica/fisiologia , Alvéolos Pulmonares/anormalidades , Artéria Pulmonar/anormalidades , Veias Pulmonares/anormalidades , Animais , Animais Recém-Nascidos , Divisão Celular/fisiologia , Células Cultivadas , DNA/biossíntese , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfolipase C gama/metabolismo , Fosforilação/fisiologia , Alvéolos Pulmonares/irrigação sanguínea , Alvéolos Pulmonares/fisiologia , Artéria Pulmonar/fisiologia , Circulação Pulmonar , Veias Pulmonares/fisiologia , Transdução de Sinais/fisiologia , Taxa de Sobrevida , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Circ Res ; 101(1): 97-105, 2007 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17525369

RESUMO

Unidirectional laminar flow is atheroprotective, in part by inhibiting cytokine-mediated endothelial cell (EC) inflammation and apoptosis. Previously, we showed that flow inhibited TNF-alpha signaling by preventing activation of JNK. Recently, PKCzeta was identified as the PKC isoform most strongly regulated by flow pattern, with increased PKCzeta activity in regions of disturbed flow versus unidirectional flow. Interestingly, PKCzeta is cleaved by caspases after TNF-alpha stimulation to generate a 50-kDa truncated form (CATzeta, catalytic domain of PKCzeta) with a higher kinase activity than the full-length protein. We hypothesized that flow would inhibit TNF-alpha-mediated PKCzeta cleavage and thereby CATzeta formation. We found that PKCzeta activity was required for TNF-alpha-mediated JNK and caspase-3 activation in ECs. PKCzeta was rapidly cleaved to generate CATzeta in cultured bovine and human aortic ECs and in intact rabbit vessels stimulated with TNF-alpha. This truncated form of PKCzeta enhanced JNK and caspase-3 activation. Interestingly, PKCzeta cleavage was prevented by inhibitors of PKCzeta, JNK, and caspase activities, suggesting that these enzymes, via regulating CATzeta formation, modulate caspase-3 activity in ECs. Finally, we found that flow reduced caspase-dependent processing of PKCzeta and caspase-3 activation. These results define a novel role for PKCzeta as a shared signaling mediator for flow and TNF-alpha, and important for flow-mediated inhibition of proinflammatory and apoptotic events in ECs.


Assuntos
Inibidores de Caspase , Células Endoteliais/metabolismo , Proteína Quinase C/antagonistas & inibidores , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Velocidade do Fluxo Sanguíneo , Caspases/metabolismo , Bovinos , Células Cultivadas , Humanos , Masculino , Proteína Quinase C/metabolismo , Coelhos , Reologia/métodos , Fator de Necrose Tumoral alfa/metabolismo
13.
Circ Res ; 98(11): 1446-52, 2006 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-16627783

RESUMO

Intima-media thickening (IMT) in response to hemodynamic stress is a physiological process that requires coordinated signaling among endothelial, inflammatory, and vascular smooth muscle cells (VSMC). Axl, a receptor tyrosine kinase, whose ligand is Gas6, is highly induced in VSMC after carotid injury. Because Axl regulates cell migration, phagocytosis and apoptosis, we hypothesized that Axl would play a role in IMT. Vascular remodeling in mice deficient in Axl (Axl(-/-)) and wild-type littermates (Axl(+/+)) was induced by ligation of the left carotid artery (LCA) branches maintaining flow via the left occipital artery. Both genotypes had similar baseline hemodynamic parameters and carotid artery structure. Partial ligation altered blood flow equally in both genotypes: increased by 60% in the right carotid artery (RCA) and decreased by 80% in the LCA. There were no significant differences in RCA remodeling between genotypes. However, in the LCA Axl(-/-) developed significantly smaller intima+media compared with Axl(+/+) (31+/-4 versus 42+/-6x10(-6) microm3, respectively). Quantitative immunohistochemistry of Axl(-/-) LCA showed increased apoptosis compared with Axl(+/+) (5-fold). As expected, p-Akt was decreased in Axl(-/-), whereas there was no difference in Gas6 expression. Cell composition also changed significantly, with increases in CD45+ cells and decreases in VSMC, macrophages, and neutrophils in Axl(-/-) compared with Axl(+/+). These data demonstrate an important role for Axl in flow-dependent remodeling by regulating vascular apoptosis and vascular inflammation.


Assuntos
Circulação Sanguínea/fisiologia , Artéria Carótida Primitiva/fisiologia , Proteínas Oncogênicas/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Túnica Íntima/fisiologia , Túnica Média/fisiologia , Animais , Apoptose , Artérias Carótidas/citologia , Artérias Carótidas/fisiologia , Artéria Carótida Primitiva/citologia , Proliferação de Células , Feminino , Hemodinâmica , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ligadura , Masculino , Camundongos , Camundongos Knockout , Proteínas Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Túnica Íntima/metabolismo , Túnica Média/metabolismo , Receptor Tirosina Quinase Axl
14.
Circ Res ; 98(6): 777-84, 2006 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16514069

RESUMO

In response to biological and mechanical injury, or in vitro culturing, vascular smooth muscle cells (VSMCs) undergo phenotypic modulation from a differentiated "contractile" phenotype to a dedifferentiated "synthetic" one. This results in the capacity to proliferate, migrate, and produce extracellular matrix proteins, thus contributing to neointimal formation. Cyclic nucleotide phosphodiesterases (PDEs), by hydrolyzing cAMP or cGMP, are critical in the homeostasis of cyclic nucleotides that regulate VSMC growth. Here, we demonstrate that PDE1A, a Ca2+-calmodulin-stimulated PDE preferentially hydrolyzing cGMP, is predominantly cytoplasmic in medial "contractile" VSMCs but is nuclear in neointimal "synthetic" VSMCs. Using primary VSMCs, we show that cytoplasmic and nuclear PDE1A were associated with a contractile marker (SM-calponin) and a growth marker (Ki-67), respectively. This suggests that cytoplasmic PDE1A is associated with the "contractile" phenotype, whereas nuclear PDE1A is with the "synthetic" phenotype. To determine the role of nuclear PDE1A, we examined the effects loss-of-PDE1A function on subcultured VSMC growth and survival using PDE1A RNA interference and pharmacological inhibition. Reducing PDE1A function significantly attenuated VSMC growth by decreasing proliferation via G1 arrest and inducing apoptosis. Inhibiting PDE1A also led to intracellular cGMP elevation, p27Kip1 upregulation, cyclin D1 downregulation, and p53 activation. We further demonstrated that in subcultured VSMCs redifferentiated by growth on collagen gels, cytoplasmic PDE1A regulates myosin light chain phosphorylation with little effect on apoptosis, whereas inhibiting nuclear PDE1A has the opposite effects. These suggest that nuclear PDE1A is important in VSMC growth and survival and may contribute to the neointima formation in atherosclerosis and restenosis.


Assuntos
Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia , Diester Fosfórico Hidrolases/fisiologia , Animais , Apoptose , Núcleo Celular/química , Núcleo Celular/fisiologia , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , GMP Cíclico/análise , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1 , Inibidor de Quinase Dependente de Ciclina p27/análise , Citoplasma/química , Humanos , Masculino , Camundongos , Músculo Liso Vascular/enzimologia , Diester Fosfórico Hidrolases/análise , Ratos , Ratos Sprague-Dawley , Proteína Supressora de Tumor p53/análise
15.
J Biol Chem ; 279(27): 28766-70, 2004 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-15123721

RESUMO

Axl, a receptor tyrosine kinase, is involved in cell survival, proliferation, and migration. We have shown that Axl expression increases in the neointima of balloon-injured rat carotids. Because oxidative stress is known to play a major role in remodeling of injured vessels, we hypothesized that H(2)O(2) might activate Axl by promoting autophosphorylation. H(2)O(2) rapidly stimulated Axl tyrosine phosphorylation in rat vascular smooth muscle cells within 1 min that was maximal at 5 min (6-fold). The response to H(2)O(2) was concentration-dependent with EC(50) of approximately 500 microm. Axl phosphorylation was partly dependent on production of its endogenous ligand, growth arrest gene 6 (Gas6), because Axl-Fc, a fragment of Axl extracellular domain that neutralizes Gas6, inhibited H(2)O(2)-induced Axl phosphorylation by 50%. Axl phosphorylation by H(2)O(2) was also attenuated by warfarin, which inhibits Gas6 activity by preventing post-translational modification. In intact vessels Axl was phosphorylated by H(2)O(2), and Axl phosphorylation was inhibited by warfarin treatment in balloon-injured carotids. Akt, a downstream target of Axl, was phosphorylated by H(2)O(2)in Axl(+/+) mouse aorta but significantly inhibited in Axl(-/-) aorta. Intimal proliferation was decreased significantly in a cuff injury model in Axl(-/-) mice compared with Axl(+/+) mice. In summary, Axl is an important signaling mediator for oxidative stress in cultured vascular smooth muscle cells and intact vessels and may represent an important therapeutic target for vascular remodeling and response to injury.


Assuntos
Peróxido de Hidrogênio/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Músculo Liso Vascular/citologia , Proteínas Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Western Blotting , Divisão Celular , Movimento Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Artéria Femoral/patologia , Peróxido de Hidrogênio/metabolismo , Immunoblotting , Ligantes , Masculino , Camundongos , Camundongos Transgênicos , Estresse Oxidativo , Fosforilação , Testes de Precipitina , Proteínas Proto-Oncogênicas , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Tirosina/química , Tirosina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Varfarina/farmacologia , Receptor Tirosina Quinase Axl
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA