Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 41(21): 12093-12105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36935101

RESUMO

Respiratory syncytial virus (RSV) is an infectious viral pathogen that causing serious respiratory infection in adults and neonates. The only approved therapies for RSV are the monoclonal antibodies palivizumab and its derivative motavizumab. Both treatments are expensive and require a hospital setting for administration. A vaccine represents a safe, effective and cheaper alternative for preventing RSV infection. In silico prediction methods have proven to be valuable in speeding up the process of vaccine design. In this study, reverse vaccinology methods were used to predict the cytotoxic T lymphocytes (CTL) epitopes from the entire proteome of RSV strain A. From amongst 3402 predicted binders to 12 high frequency alleles from the Immune Epitope Database (IEDB), 567 had positive processing scores while 327 epitopes were predicted to be immunogenic. A thorough examination of the 327 epitopes for possible antigenicity, allergenicity and toxicity resulted in 95 epitopes with desirable properties. A BLASTp analysis revealed 94 unique and non-homologous epitopes that were subjected to molecular docking across the 12 high frequency alleles. The final dataset of 70 epitopes contained 13 experimentally proven and 57 unique epitopes from a total of 11 RSV proteins. From our findings on selected T-cell-specific RSV antigen epitopes, notably the four epitopes confirmed to exhibit stable binding by molecular dynamics. The prediction pipeline used in this study represents an effective way to screen the immunogenic epitopes from other pathogens.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Adulto , Recém-Nascido , Humanos , Epitopos de Linfócito T , Linfócitos T Citotóxicos , Simulação de Acoplamento Molecular , Epitopos de Linfócito B , Vacinas de Subunidades Antigênicas
2.
J Cell Biochem ; 123(3): 532-542, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34935169

RESUMO

Selenium (Se) is incorporated into the body via the selenocysteine (Sec) biosynthesis pathway, which is critical in the synthesis of selenoproteins, such as glutathione peroxidases and thioredoxin reductases. Selenoproteins, which play a key role in several biological processes, including ferroptosis, drug resistance, endoplasmic reticulum stress, and epigenetic processes, are guided by Se uptake. In this review, we critically analyze the molecular mechanisms of Se metabolism and its potential as a therapeutic target for cancer. Sec insertion sequence binding protein 2 (SECISBP2), which is a positive regulator for the expression of selenoproteins, would be a novel prognostic predictor and an alternate target for cancer. We highlight strategies that attempt to develop a novel Se metabolism-based approach to uncover a new metabolic drug target for cancer therapy. Moreover, we expect extensive clinical use of SECISBP2 as a specific biomarker in cancer therapy in the near future. Of note, scientists face additional challenges in conducting successful research, including investigations on anticancer peptides to target SECISBP2 intracellular protein.


Assuntos
Neoplasias , Selênio , Proteínas de Transporte/metabolismo , Humanos , Redes e Vias Metabólicas , Neoplasias/tratamento farmacológico , Selênio/metabolismo , Selênio/uso terapêutico , Selenoproteínas/química , Selenoproteínas/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
3.
Biotechnol Prog ; 35(4): e2817, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30972965

RESUMO

Fetal Bovine Serum (FBS) is used as a major supplement in culturing animal cells under in vitro conditions. Due to ethical concern, high cost, biosafety, and geographical as well as batchwise result variations, it is important to reduce or replace the use of FBS in animal cell culture. The major objective of this work is to evaluate the feasibility of heat-inactivated coelomic fluid (HI-CF) of the earthworm, Perionyx excavatus as a possible alternative for FBS in animal cell culture experiments. The coelomic fluid (CF) was extruded from the earthworm using electric shock method and used for the experiments. Electric shock method is a simple non-invasive technique, which has no harmful effect on earthworms. Mouse primary fibroblast and HeLa cell lines were used in this study. Among HI-CF, autoclaved CF and crude CF, the supplement of medium with HI-CF shows positive results. The processed HI-CF (90°C for 5 min) at 10% supplement in cell culture medium promote maximum cell growth but cells need the initial support of FBS for the attachment to the culture flask. Microscopic observation and immunofluorescence assay with actin and lamin A confirm that the cellular and molecular morphology of the cells is maintained intact. The HI-CF of earthworm, P. excavatus has shown better cellular viability when compared with FBS and making it possible as an alternative supplement to minimize the use of FBS.


Assuntos
Líquidos Corporais/química , Carnitina/química , Meios de Cultura/química , Temperatura Alta , Animais , Bovinos , Proliferação de Células , Sobrevivência Celular , Células HeLa , Humanos , Camundongos , Oligoquetos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA