Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
RSC Adv ; 14(38): 27816-27830, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39224640

RESUMO

Phytomedicines are potential immunity-boosting components with effective anticystic properties, minimal side effects, and biomedical applications, making them valuable for combating various diseases. India is renowned globally for Ayurveda, an ancient treatment methodology known for its holistic approach in identifying the root cause of diseases. Tulsi (Ocimum sanctum) is a common household medicine in India. While essential oils from plants like Tulsi have long been recognized for their medicinal properties, there is a gap in understanding their potential in synthesizing gold nanoparticles (AuNPs) and their efficacy against breast carcinoma, particularly in the context of immunosuppressive conditions. We investigated the potential application of essential oils isolated from O. sanctum in the synthesis of AuNPs and their efficacy against MCF-7 breast carcinoma. Gas chromatography-mass spectroscopy identified compounds with potential anticancer effects against breast cancer cells. Synthesised AuNPs displayed high hemocompatibility and antimicrobial activity against nosocomial Pseudomonas aeruginosa, Escherichia coli, Vibrio cholerae, and Bacillus subtilis strains. Os-AuNPs induced chromosomal instability and mitotic arrest in the G2/M cell cycle phase. Subsequent fluorescence and cell cytometry studies demonstrated the systemic release of ROS, depolarisation of mitochondrial membrane potential, and production of apoptotic bodies. DNA damage and comet assays confirmed the anticancer potential of synthesised AuNPs. This study illuminates the potential of O. sanctum-derived AuNPs in breast carcinoma treatment, paving the way for future AuNP-based therapies in biomedicine.

2.
Food Sci Biotechnol ; 33(9): 2141-2160, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39130664

RESUMO

One of the greatest threats to global health is cancer. Probiotic foods have been shown to have therapeutic promise in the management of cancer, even though traditional treatments such as radiation therapy, chemotherapy, and surgery are still essential. The generation of anticarcinogenic compounds, immune system stimulation, and gut microbiota regulation are a few ways that probiotics when taken in sufficient quantities, might help health. The purpose of this review is to examine the therapeutic potential of probiotic foods in the management of cancer. Research suggests that certain strains of probiotics have anticancer effects by preventing the growth of cancer cells, triggering apoptosis, and reducing angiogenesis in new tumors. Probiotics have shown promise in mitigating treatment-related adverse effects, such as diarrhea, mucositis, and immunosuppression caused by chemotherapy, improving the general quality of life for cancer patients. However, there are several factors, such as patient-specific features, cancer subtype, and probiotic strain type and dosage, which affect how effective probiotic therapies are in managing cancer. More research is necessary to find the long-term safety and efficacy characteristics of probiotics as well as to clarify the best ways to incorporate them into current cancer treatment methods. Graphical abstract: Graphical representation showing the role of probiotic foods in cancer management.

3.
Curr Med Chem ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38333973

RESUMO

Tumor diseases remain among the world's primary causes of death despite substantial advances in cancer diagnosis and treatment. The adverse chemotherapy problems and sensitivity towards drugs for some cancer types are among the most promising challenges in modern treatment. Finding new anti-cancer agents and drugs is, therefore, essential. A significant class of biologically active substances and prospective medications against cancer is comprised of bacterial proteins and peptides. Among these bacterial peptides, some of them, such as anti-cancer antibiotics and many toxins like diphtheria are widely being used in the treatment of cancer. In contrast, the remaining bacterial peptides are either in clinical trials or under research in vitro studies. This study includes the most recent information on the characteristics and mechanism of action of the bacterial peptides that have anti-cancer activities, some of which are now being employed in cancer therapy while some are still undergoing research.

4.
Biochem Biophys Res Commun ; 688: 149126, 2023 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-37951153

RESUMO

The prospective contribution of phyto-nanotechnology to the synthesis of silver nanomaterials for biomedical purposes is attracting increasing interest across the world. Green synthesis of silver nanoparticles (Ag-NPs) through plants has been extensively examined recently, and it is now seen to be a green and efficient path for future exploitation and development of practical nano-factories. Fabrication of Ag-NPs is the process involves use of plant extracts/phyto-compounds (e.g.alkaloids, terpenoids, flavonoids, and phenolic compounds) to synthesise nanoparticles in more economical and feasible. Several findings concluded that in the field of medicine, Ag-NPs play a major role in pharmacotherapy (infection and cancer). Indeed, they exhibits novel properties but the reason is unclear (except some theoretical interpretation e.g. size, shape and morphology). But recent technological advancements help to address these questions by predicting the unique properties (composition and origin) by characterizing physical, chemical and biological properties. Due to increased list of publications and their application in the field of agriculture, industries and pharmaceuticals, issues relating to toxicity are unavoidable and question of debate. The present reviews aim to find out the role of plant extracts to synthesise Ag-NPs. It provides an overview of various phytocompounds and their role in the field of biomedicine (antibacterial, antioxidant, anticancer, anti-inflammatory etc.). In addition, this review also especially focused on various applications such as role in infection, oxidative stress, application in medical engineering, diagnosis and therapy, medical devices, orthopedics, wound healing and dressings. Additionally, the toxic effects of Ag-NPs in cell culture, tissue of different model organism, type of toxic reactions and regulation implemented to reduce associated risk are discussed critically. Addressing all above explanations, this review focus on the detailed properties of plant mediated Ag-NPs, its impact on biology, medicine and their commercial properties as well as toxicity.


Assuntos
Nanopartículas Metálicas , Prata , Prata/química , Nanopartículas Metálicas/química , Estudos Prospectivos , Extratos Vegetais/química , Antibacterianos/farmacologia
5.
Sci Rep ; 13(1): 16314, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770520

RESUMO

Sediment contamination jeopardizes wetlands by harming aquatic organisms, disrupting food webs, and reducing biodiversity. Carcinogenic substances like heavy metals bioaccumulate in sediments and expose consumers to a greater risk of cancer. This study reports Pb, Cr, Cu, and Zn levels in sediments from eight wetlands in India. The Pb (51.25 ± 4.46 µg/g) and Cr (266 ± 6.95 µg/g) concentrations were highest in Hirakud, Cu (34.27 ± 2.2 µg/g) in Bhadrak, and Zn (55.45 ± 2.93 µg/g) in Koraput. The mean Pb, Cr, and Cu values in sediments exceeded the toxicity reference value. The contamination factor for Cr was the highest of the four metals studied at Hirakud (CF = 7.60) and Talcher (CF = 6.97). Furthermore, high and moderate positive correlations were observed between Cu and Zn (r = 0.77) and Pb and Cr (r = 0.36), respectively, across all sites. Cancer patients were found to be more concentrated in areas with higher concentrations of Pb and Cr, which are more carcinogenic. The link between heavy metals in wetland sediments and human cancer could be used to make policies that limit people's exposure to heavy metals and protect their health.


Assuntos
Metais Pesados , Neoplasias , Poluentes Químicos da Água , Humanos , Áreas Alagadas , Carcinógenos/toxicidade , Chumbo , Sedimentos Geológicos , Monitoramento Ambiental , Metais Pesados/toxicidade , Metais Pesados/análise , Neoplasias/induzido quimicamente , Medição de Risco , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , China
6.
Environ Pollut ; 330: 121796, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37169242

RESUMO

Metals are micropollutants that cannot be degraded by microorganisms and are infiltrated into various environmental media, including both freshwater and marine water. Metals from polluted water are absorbed by many aquatic species, especially fish. Fish is a staple food in the diets of many regions in the world; hence, both the type and concentration of metals accumulated and transferred from contaminated water sources to fish must be determined and assessed. In this study, the heavy metal concentration was determined and assessed in fish collected from freshwater sources via published literature and Estimated Daily Intake (EDI), Target hazard quotient (THQ), and Carcinogenic Risk (CR) analyses, aiming to examine the metal pollution in freshwater fish. The fish was used as a bioindicator, and Geographic information system (GIS) was sued to map the polluted regions. The results confirmed that Pb was detected in fish sampled at 28 locations, Cr at 24 locations, Cu and Zn at 30 locations, with values Pb detected ranging from 0.0016 mg kg-1 to 44.3 mg kg-1, Cr detected ranging from 0.07 mg kg-1 to 27 mg kg-1, Cu detected ranging from 0.031 mg kg-1 to 35.54 mg kg-1, and Zn detected ranging from 0.242 mg kg-1 to 103.2 mg kg-1. The strongest positive associations were discovered between Cu-Zn (r = 0.74, p < 0.05) and Cr-Zn (r = 0.57, p < 0.05). Spatial distribution maps depicting the consumption of fish as food and its corresponding Pb and Cr intake revealed a higher incidence of both carcinogenic and non-carcinogenic health concerns attributed to Pb and Cr in the region with populations consuming the fish.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Carcinógenos/análise , Saúde Pública , Chumbo/análise , Monitoramento Ambiental , Metais Pesados/análise , Água Doce/análise , Peixes , Poluição da Água/análise , Água/análise , Medição de Risco , Poluentes Químicos da Água/análise , Contaminação de Alimentos/análise
8.
Molecules ; 28(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36985818

RESUMO

Diabetes mellitus is a complex illness in which the body does not create enough insulin to control blood glucose levels. Worldwide, this disease is life-threatening and requires low-cost, side-effect-free medicine. Due to adverse effects, many synthetic hypoglycemic medications for diabetes fail. Mushrooms are known to contain natural bioactive components that may be anti-diabetic; thus, scientists are now targeting them. Mushroom extracts, which improve immune function and fight cancer, are becoming more popular. Mushroom-derived functional foods and dietary supplements can delay the onset of potentially fatal diseases and help treat pre-existing conditions, which leads to the successful prevention and treatment of type 2 diabetes, which is restricted to the breakdown of complex polysaccharides by pancreatic-amylase and the suppression of intestinal-glucosidase. Many mushroom species are particularly helpful in lowering blood glucose levels and alleviating diabetes symptoms. Hypoglycaemic effects have been observed in investigations on Agaricussu brufescens, Agaricus bisporus, Cordyceps sinensis, Inonotus obliqus, Coprinus comatus, Ganoderma lucidum, Phellinus linteus, Pleurotus spp., Poria cocos, and Sparassis crispa. For diabetics, edible mushrooms are high in protein, vitamins, and minerals and low in fat and cholesterol. The study found that bioactive metabolites isolated from mushrooms, such as polysaccharides, proteins, dietary fibers, and many pharmacologically active compounds, as well as solvent extracts of mushrooms with unknown metabolites, have anti-diabetic potential in vivo and in vitro, though few are in clinical trials.


Assuntos
Agaricales , Diabetes Mellitus Tipo 2 , Pleurotus , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/prevenção & controle , Glicemia , Suplementos Nutricionais , Polissacarídeos
9.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142546

RESUMO

Green nanotechnology is currently a very crucial and indispensable technology for handling diverse problems regarding the living planet. The concoction of reactive oxygen species (ROS) and biologically synthesized silver nanoparticles (AgNPs) has opened new insights in cancer therapy. The current investigation caters to the concept of the involvement of a novel eco-friendly avenue to produce AgNPs employing the wild endolichenic fungus Talaromyces funiculosus. The synthesized Talaromyces funiculosus-AgNPs were evaluated with the aid of UV visible spectroscopy, dynamic light scattering (DLS), Fourier infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The synthesized Talaromyces funiculosus-AgNPs (TF-AgNPs) exhibited hemo-compatibility as evidenced by a hemolytic assay. Further, they were evaluated for their efficacy against foodborne pathogens Staphylococcus aureus, Streptococcus faecalis, Listeria innocua, and Micrococcus luteus and nosocomial Pseudomonas aeruginosa, Escherichia coli, Vibrio cholerae, and Bacillus subtilis bacterial strains. The synthesized TF-AgNPs displayed cytotoxicity in a dose-dependent manner against MDA-MB-231 breast carcinoma cells and eventually condensed the chromatin material observed through the Hoechst 33342 stain. Subsequent analysis using flow cytometry and fluorescence microscopy provided the inference of a possible role of intracellular ROS (OH-, O-, H2O2, and O2-) radicals in the destruction of mitochondria, DNA machinery, the nucleus, and overall damage of the cellular machinery of breast cancerous cells. The combined effect of predation by the cyclopoid copepod Mesocyclops aspericornis and TF-AgNPS for the larval management of dengue vectors were provided. A promising larval control was evident after the conjunction of both predatory organisms and bio-fabricated nanoparticles. Thus, this study provides a novel, cost-effective, extracellular approach of TF-AgNPs production with hemo-compatible, antioxidant, and antimicrobial efficacy against both human and foodborne pathogens with cytotoxicity (dose dependent) towards MDA-MB-231 breast carcinoma.


Assuntos
Anti-Infecciosos , Neoplasias da Mama , Nanopartículas Metálicas , Talaromyces , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Cromatina , Escherichia coli , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Prata/química , Prata/farmacologia
10.
Nanoscale ; 14(29): 10399-10417, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35819245

RESUMO

Cancer cells use nutrients like D-glucose (Glc) and L-glutamine (Q) more efficiently for their development. This increased nutritional dependency of malignant cells has been commonly employed in various in vitro and in vivo models of anticancer therapies. This study utilized a combination of a low dose (25 µg mL-1) of S2, a phytosynthesized gold nanoparticle (AuNP) that was previously proven to be non-toxic, and deprivation of extracellular glutamine as an anticancer strategy in the human cervical cancer cell line HeLa. We discovered that 24 h Q deprivation led to a less significant decrease in the viability of HeLa cells while a low dose of S2 caused a non-significant reduction in the viability of HeLa cells. However, combining these two treatments resulted in highly significant inhibition of cell growth, as measured by the MTT test and morphological examination. Glutamine starvation in HeLa cells was found to induce cellular uptake of S2 via clathrin-mediated endocytosis, thus facilitating the improved antitumor effects of the combined treatment. Flow cytometry-based assays using fluorescent probes H2DCFDA and MitoSOX Red confirmed that this combination therapy involved the development of oxidative stress conditions owing to a surplus of cytosolic reactive oxygen species (cytoROS) and mitochondrial superoxide (mtSOX) generation. Furthermore, the investigated combinatorial treatment also indicated mitochondrial inactivity and disintegration, as evidenced by the drop in the mitochondrial membrane potential (Δψm) and the decrease in the mitochondrial mass (mtMass) in a flow-cytometric assay utilizing the probes. Tetramethylrhodamine ethyl ester and MitoTracker Green FM, respectively. Cell cycle arrest in the G0/G1 phase, induction of cell death via apoptosis/necrosis, and inhibition of migration capacities of HeLa cells were also seen after the combined treatment. Thus, this research provides insight into a new combinatorial approach for reducing the dose of nanoparticles and increasing their efficacy to better inhibit the growth of human cervical cancer cells by leveraging their extracellular glutamine dependence.


Assuntos
Nanopartículas Metálicas , Neoplasias do Colo do Útero , Apoptose , Pontos de Checagem do Ciclo Celular , Sobrevivência Celular , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Glutamina/metabolismo , Glutamina/farmacologia , Glutamina/uso terapêutico , Ouro/metabolismo , Células HeLa , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico
11.
J Clin Med ; 11(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35806905

RESUMO

Mucormycosis has become increasingly associated with COVID-19, leading to the use of the term "COVID-19 associated mucormycosis (CAM)". Treatment of CAM is challenging due to factors such as resistance to many antifungals and underlying co-morbidities. India is particularly at risk for this disease due to the large number of patients with COVID-19 carrying comorbidities that predispose them to the development of mucormycosis. Additionally, mucormycosis treatment is complicated due to the atypical symptoms and delayed presentation after the resolution of COVID-19. Since this disease is associated with increased morbidity and mortality, early identification and diagnosis are desirable to initiate a suitable combination of therapies and control the disease. At present, the first-line treatment involves Amphotericin B and surgical debridement. To overcome limitations associated with surgery (invasive, multiple procedures required) and amphotericin B (toxicity, extended duration and limited clinical success), additional therapies can be utilized as adjuncts or alternatives to reduce treatment duration and improve prognosis. This review discusses the challenges associated with treating CAM and the critical aspects for controlling this invasive fungal infection-early diagnosis and initiation of therapy, reversal of risk factors, and adoption of a multipronged treatment strategy. It also details the various therapeutic options (in vitro, in vivo and human case reports) that have been used for the treatment of CAM.

12.
Ann Med Surg (Lond) ; 79: 103985, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35721786

RESUMO

From many decades, emerging infections have threatened humanity. The pandemics caused by different CoVs have already claimed and will continue to claim millions of lives. The SARS, Ebola, MERS epidemics and the most recent emergence of COVID-19 pandemic have threatened populations across borders. Since a highly pathogenic CoV has been evolved into the human population in the twenty-first century known as SARS, scientific advancements and innovative methods to tackle these viruses have increased in order to improve response preparedness towards the unpredictable threat posed by these rapidly emerging pathogens. Recently published review articles on SARS-CoV-2 have mainly focused on its pathogenesis, epidemiology and available treatments. However, in this review, we have done a systematic comparison of all three CoVs i.e., SARS, MERS and SARS-CoV-2 along with Ebola and Zika in terms of their epidemiology, virology, clinical features and current treatment strategies. This review focuses on important emerging RNA viruses starting from Zika, Ebola and the CoVs which include SARS, MERS and SARS-CoV-2. Each of these viruses has been elaborated on the basis of their epidemiology, virulence, transmission and treatment. However, special attention has been given to SARS-CoV-2 and the disease caused by it i.e., COVID-19 due to current havoc caused worldwide. At the end, insights into the current understanding of the lessons learned from previous epidemics to combat emerging CoVs have been described. The travel-related viral spread, the unprecedented nosocomial outbreaks and the high case-fatality rates associated with these highly transmissible and pathogenic viruses highlight the need for new prophylactic and therapeutic actions which include but are not limited to clinical indicators, contact tracing, and laboratory investigations as important factors that need to be taken into account in order to arrive at the final conclusion.

14.
Oxid Med Cell Longev ; 2022: 3863138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251470

RESUMO

Green-based synthesis of metal nanoparticles using marine seaweeds is a rapidly growing technology that is finding a variety of new applications. In the present study, the aqueous extract of a marine seaweed, Gracilaria edulis, was employed for the synthesis of metallic nanoparticles without using any reducing and stabilizing chemical agents. The visual color change and validation through UV-Vis spectroscopy provided an initial confirmation regarding the Gracilaria edulis-mediated green synthesized silver nanoparticles. The dynamic light scattering studies and high-resolution transmission electron microscopy pictographs exhibited that the synthesized Gracilaria edulis-derived silver nanoparticles were roughly spherical in shape having an average size of 62.72 ± 0.25 nm and surface zeta potential of -15.6 ± 6.73 mV. The structural motifs and chemically functional groups associated with the Gracilaria edulis-derived silver nanoparticles were observed through X-ray diffraction and attenuated total reflectance Fourier transform infrared spectroscopy. Further, the synthesized nanoparticles were further screened for their antioxidant properties through DPPH, hydroxyl radical, ABTS, and nitric oxide radical scavenging assays. The phycosynthesized nanoparticles exhibited dose-dependent cytotoxicity against MDA-MB-231 breast carcinoma cells having IC50 value of 344.27 ± 2.56 µg/mL. Additionally, the nanoparticles also exhibited zone of inhibition against pathogenic strains of Bacillus licheniformis (MTCC 7425), Salmonella typhimurium (MTCC 3216), Vibrio cholerae (MTCC 3904), Escherichia coli (MTCC 1098), Staphylococcus epidermidis (MTCC 3615), and Shigella dysenteriae (MTCC9543). Hence, this investigation explores the reducing and stabilizing capabilities of marine sea weed Gracilaria edulis for synthesizing silver nanoparticles in a cost-effective approach with potential anticancer and antimicrobial activity. The nanoparticles synthesized through green method may be explored for their potential utility in food preservative film industry, biomedical, and pharmaceutical industries.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Gracilaria/química , Química Verde/métodos , Nanopartículas Metálicas/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Alga Marinha/química , Prata/química , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Testes de Sensibilidade Microbiana , Tamanho da Partícula
15.
J Fungi (Basel) ; 8(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35205965

RESUMO

Obesity, usually indicated by a body mass index of more than 30 kg/m2, is a worsening global health issue. It leads to chronic diseases, including type II diabetes, hypertension, and cardiovascular diseases. Conventional treatments for obesity include physical activity and maintaining a negative energy balance. However, physical activity alone cannot determine body weight as several other factors play a role in the overall energy balance. Alternatively, weight loss may be achieved by medication and surgery. However, these options can be expensive or have side effects. Therefore, dietary factors, including dietary modifications, nutraceutical preparations, and functional foods have been investigated recently. For example, edible mushrooms have beneficial effects on human health. Polysaccharides (essentially ß-D-glucans), chitinous substances, heteroglycans, proteoglycans, peptidoglycans, alkaloids, lactones, lectins, alkaloids, flavonoids, steroids, terpenoids, terpenes, phenols, nucleotides, glycoproteins, proteins, amino acids, antimicrobials, and minerals are the major bioactive compounds in these mushrooms. These bioactive compounds have chemo-preventive, anti-obesity, anti-diabetic, cardioprotective, and neuroprotective properties. Consumption of edible mushrooms reduces plasma triglyceride, total cholesterol, low-density lipoprotein, and plasma glucose levels. Polysaccharides from edible mushrooms suppress mRNA expression in 3T3-L1 adipocytes, contributing to their anti-obesity properties. Therefore, edible mushrooms or their active ingredients may help prevent obesity and other chronic ailments.

16.
Int J Mol Sci ; 23(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35054912

RESUMO

At present, the potential role of the AgNPs/endo-fullerene molecule metal nano-composite has been evaluated over the biosystems in-vitro. The intra-atomic configuration of the fullerene molecule (C60) has been studied in-vitro for the anti-proliferative activity of human breast adenocarcinoma (MDA-MB-231) cell lines and antimicrobial activity against a few human pathogens that have been augmented with the pristine surface plasmonic electrons and antibiotic activity of AgNPs. Furthermore, FTIR revealed the basic vibrational signatures at ~3300 cm-1, 1023 cm-1, 1400 cm-1 for O-H, C-O, and C-H groups, respectively, for the carbon and oxygen atoms of the C60 molecule. NMR studies exhibited the different footprints and magnetic moments at ~7.285 ppm, explaining the unique underlying electrochemical attributes of the fullerene molecule. Such unique electronic and physico-chemical properties of the caged carbon structure raise hope for applications into the drug delivery domain. The in-vitro dose-dependent application of C60 elicits a toxic response against both the breast adenocarcinoma cell lines and pathogenic microbes. That enables the use of AgNPs decorated C60 endo fullerene molecules to design an effective anti-cancerous drug delivery and antimicrobial agent in the future, bringing a revolutionary change in the perspective of a treatment regime.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Fulerenos/química , Nanopartículas Metálicas/química , Prata/química , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/ultraestrutura , Nanocompostos/química , Análise Espectral
17.
J Mater Sci Mater Med ; 32(12): 151, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34894285

RESUMO

This study employed a bottom-up technique to synthesize copper oxide (CuO) nanoparticles over hydrophilic graphene oxide (GO) nanosheets. The CuO/GO nanocomposite has been prepared using two selected precursors of copper nitrate and citric acid with an intermittent mixing of GO solutions. The synthesized Nanocomposites were characterized using different biophysical techniques like FT-IR, NMR, FE-SEM, and HR-TEM analyses. FT-IR analyses confirm the nanocomposites' successful formation, which is evident from the functional groups of C=C, C-O, and Cu-C stretching vibrations. Morphological analyses reveal the depositions of CuO nanoparticles over the planar rough GO sheets, which has been elucidated from the FE-SEM and HR-TEM analyses supported by respective EDAX analyses. The antimicrobial activities have been evident from the surface roughness and damages seen from the FE-SEM analyses. The CuO/GO sheets were tested against Gram-positive (e.g., Staphylococcus aureus) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa). It is evident that the intrinsic antibacterial activity of CuO/GO sheets, when combined in equal proportions, elicited a robust antibacterial activity when tested over Gram -ve representative bacteria Escherichia coli. The antioxidant behaviour of synthesized CuO/GO nanocomposite was evaluated by scavenging the free radicals of DPPH and ABTS. Moreover, the cytotoxic activity was also studied against epidermoid carcinoma cell line A-431. A brief mathematical formulation has been proposed in this study to uncover the possibilities of using the nanocomposites as potential drug candidates in theranostic applications in disease treatment and diagnosis. This study would help uncover the electronic properties that play in the nano-scaled system at the material-bio interface, which would aid in designing a sensitive nano-electromechanical device bearing both the therapeutic and diagnostic attributes heralding a new horizon in the health care systems.


Assuntos
Antibacterianos , Antineoplásicos , Cobre/química , Grafite/química , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cobre/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Testes de Sensibilidade Microbiana , Nanocompostos/química , Nanocompostos/microbiologia , Nanocompostos/uso terapêutico , Nanoestruturas/química , Nanoestruturas/microbiologia , Nanoestruturas/uso terapêutico
18.
J Fungi (Basel) ; 7(9)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34575766

RESUMO

Mushrooms have remained an eternal part of traditional cuisines due to their beneficial health potential and have long been recognized as a folk medicine for their broad spectrum of nutraceuticals, as well as therapeutic and prophylactic uses. Nowadays, they have been extensively investigated to explain the chemical nature and mechanisms of action of their biomedicine and nutraceuticals capacity. Mushrooms belong to the astounding dominion of Fungi and are known as a macrofungus. Significant health benefits of mushrooms, including antiviral, antibacterial, anti-parasitic, antifungal, wound healing, anticancer, immunomodulating, antioxidant, radical scavenging, detoxification, hepatoprotective cardiovascular, anti-hypercholesterolemia, and anti-diabetic effects, etc., have been reported around the globe and have attracted significant interests of its further exploration in commercial sectors. They can function as functional foods, help in the treatment and therapeutic interventions of sub-optimal health states, and prevent some consequences of life-threatening diseases. Mushrooms mainly contained low and high molecular weight polysaccharides, fatty acids, lectins, and glucans responsible for their therapeutic action. Due to the large varieties of mushrooms present, it becomes challenging to identify chemical components present in them and their beneficial action. This article highlights such therapeutic activities with their active ingredients for mushrooms.

19.
Allergol Immunopathol (Madr) ; 49(2): 191-207, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33641309

RESUMO

Eosinophils are the major inflammatory cells which play a crucial role in the development of allergic and non-allergic asthma phenotypes. Eosinophilic asthma is the most heterogeneous phenotype where activated eosinophils are reported to be significantly associated with asthma severity. Activated eosinophils display an array of cell adhesion molecules that not only act as an activation marker, suitable for assessing severity, but also secrete several tissue factors, cytokines and chemokines which modulate the clinical severity. Eosinophil activations are also strictly associated with activation of other hetero cellular populations like neutrophils, macrophages, mast cells, and platelets which culminate in the onset and progression of abnormal phenotypes such as bronchoconstriction, allergic response, fibrosis instigated by tissue inflammation, epithelial injury, and oxidative stress. During the activated state, eosinophils release several potent toxic signaling molecules such as major basic proteins, eosinophil peroxidase, eosinophil cationic protein (ECP), and lipid mediators, rendering tissue damage and subsequently leading to allergic manifestation. The tissue mediators render a more complex manifestation of a severe phenotype by activating prominent signaling cross-talk. Here, in the current review with the help of search engines of PubMed, Medline, etc, we have tried to shed light and explore some of the potent determinants regulating eosinophil activation leading to asthma phenotype.


Assuntos
Asma/imunologia , Comunicação Celular/imunologia , Eosinófilos/imunologia , Remodelação das Vias Aéreas/imunologia , Animais , Asma/sangue , Asma/diagnóstico , Asma/patologia , Plaquetas/imunologia , Brônquios/imunologia , Brônquios/patologia , Broncoconstrição/imunologia , Modelos Animais de Doenças , Eosinófilos/metabolismo , Fibrose , Humanos , Contagem de Leucócitos , Macrófagos/imunologia , Mastócitos/imunologia , Camundongos , Neutrófilos/imunologia , Estresse Oxidativo/imunologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Índice de Gravidade de Doença
20.
Polymers (Basel) ; 12(10)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076234

RESUMO

Natural product extraction is ingenuity that permits the mass manufacturing of specific products in a cost-effective manner. With the aim of obtaining an alternative chitosan supply, the carapace of dead horseshoe crabs seemed feasible. This sparked an investigation of the structural changes and antioxidant capacity of horseshoe crab chitosan (HCH) by γ-irradiation using 60Co source. Chitosan was extracted from the horseshoe crab (Tachypleus gigas; Müller) carapace using heterogeneous chemical N-deacetylation of chitin, followed by the irradiation of HCH using 60Co at a dose-dependent rate of 10 kGy/hour. The average molecular weight was determined by the viscosimetric method. Regarding the chemical properties, the crystal-like structures obtained from γ-irradiated chitosan powders were determined using Fourier transfer infrared (FTIR) spectroscopy and X-ray diffraction (XRD) analyses. The change in chitosan structure was evident with dose-dependent rates between 10 and 20 kGy/hour. The antioxidant properties of horseshoe crab-derived chitosan were evaluated in vitro. The 20 kGy γ-irradiation applied to chitosan changed the structure and reduced the molecular weight, providing sufficient degradation for an increase in antioxidant activity. Our findings indicate that horseshoe crab chitosan can be employed for both scald-wound healing and long-term food preservation due to its buffer-like and radical ion scavenging ability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA