Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-16, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37676262

RESUMO

Numerous malignancies, including breast cancer, non-small cell lung cancer, and chronic myeloid leukemia, are brought on by aberrant tyrosine kinase signaling. Since the current chemotherapeutic medicines are toxic, there is a great need and demand from cancer patients to find novel chemicals that are toxic-free or have low toxicity and that can kill tumor cells and stop their growth. This work describes the in-silico examination of substances from the drug bank as EGFR inhibitors. Firstly, drug-bank was screened using the pharmacophore technique to select the ligands and Erlotinib (DB00530) was used as matrix compound. The selected ligands were screened using ADMET and the hit compounds were subjected to docking. The lead compound from the docking was subjected to DFT and MD simulation study. Using the pharmacophore technique, 23 compounds were found through virtual drug bank screening. One hit molecule from the ADMET prediction was the subject of docking study. According to the findings, DB03365 molecule fits to the EGFR active site by several hydrogen bonding interactions with amino acids. Furthermore, DFT analysis revealed high reactivity for DB03365 compound in the binding pocket of the target protein, based on ELUMO, EHOMO and band energy gap. Furthermore, MD simulations for 100 ns revealed that the ligand interactions with the residues of EGFR protein were part of the essential residues for structural stability and functionality. However, DB03365 was a promising lead molecule that outperformed the reference compound in terms of performance and in-vitro and in-vivo experiments needs to validate the study.Communicated by Ramaswamy H. Sarma.

2.
Eur J Med Chem ; 183: 111704, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557608

RESUMO

Curcumin is a small organic molecule with pleiotropic biological activities. However, its multiple structural-pharmacokinetic challenges prevent its development into a clinical drug. Various structural modifications have been made to improve its drug profile. In this review, we focus on the methods adopted in the synthesis of asymmetric curcumin derivatives and their biological activities and forecast the future of this exciting class of compounds in the field of medicine.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Curcumina/farmacologia , Neoplasias/tratamento farmacológico , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Antineoplásicos/síntese química , Antineoplásicos/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/metabolismo , Curcumina/síntese química , Curcumina/química , Humanos , Estrutura Molecular
3.
Chem Biol Drug Des ; 93(3): 222-231, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30251480

RESUMO

Hormone replacement therapy has been a conventional treatment for postmenopausal symptoms in women. However, it has potential risks of breast and endometrial cancers. The aim of this study was to evaluate the oestrogenicity of a plant-based compound, mimosine, in MCF-7 cells by in silico model. Cell viability and proliferation, ERα-SRC1 coactivator activity and expression of specific ERα-dependent marker TFF1 and PGR genes were evaluated. Binding modes of 17ß-oestradiol and mimosine at the ERα ligand binding domain were compared using docking and molecular dynamics simulation experiments followed by binding interaction free energy calculation with molecular mechanics/Poisson-Boltzmann surface area. Mimosine showed increased cellular viability (64,450 cells/ml) at 0.1 µM with significant cell proliferation (120.5%) compared to 17ß-oestradiol (135.2%). ER antagonist tamoxifen significantly reduced proliferative activity mediated by mimosine (49.9%). Mimosine at 1 µM showed the highest ERα binding activity through increased SRC1 recruitment at 186.9%. It expressed TFF1 (11.1-fold at 0.1 µM) and PGR (13.9-fold at 0.01 µM) genes. ERα-mimosine binding energy was -49.9 kJ/mol, and it interacted with Thr347, Gly521 and His524 of ERα-LBD. The results suggested that mimosine has oestrogenic activity.


Assuntos
Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Mimosina/farmacologia , Sítios de Ligação , Estradiol/farmacologia , Receptor alfa de Estrogênio/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Mimosina/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios Proteicos , Tamoxifeno/farmacologia , Fator Trefoil-1/genética , Fator Trefoil-1/metabolismo
4.
Bioorg Med Chem Lett ; 26(10): 2531-2538, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27040659

RESUMO

The syntheses and bioactivities of symmetrical curcumin and its analogues have been the subject of interest by many medicinal chemists and pharmacologists over the years. To improve our understanding, we have synthesized a series of unsymmetrical monocarbonyl curcumin analogues and evaluated their effects on prostaglandin E2 production in lipopolysaccharide-induced RAW264.7 and U937 cells. Initially, compounds 8b and 8c exhibited strong inhibition on the production of PGE2 in both LPS-stimulated RAW264.7 (8b, IC50=12.01µM and 8c, IC50=4.86µM) and U937 (8b, IC50=3.44µM and 8c, IC50=1.65µM) cells. Placing vanillin at position Ar2 further improved the potency when both compounds 15a and 15b significantly lowered the PGE2 secretion level (RAW264.7: 15a, IC50=0.78µM and 15b, IC50=1.9µM while U937: 15a, IC50=0.95µM and 15b, IC50=0.92µM). Further experiment showed that compounds 8b, 8c, 15a and 15b did not target the activity of downstream inflammatory COX-2 mediator. Finally, docking simulation on protein targets COX-2, IKK-ß, ERK, JNK2, p38α and p38ß were performed using the conformation of 15a determined by single-crystal XRD.


Assuntos
Curcumina/análogos & derivados , Dinoprostona/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Linhagem Celular , Técnicas de Química Sintética , Cristalografia por Raios X , Curcumina/química , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Dinoprostona/antagonistas & inibidores , Humanos , Quinase I-kappa B/química , Quinase I-kappa B/metabolismo , Concentração Inibidora 50 , Macrófagos/metabolismo , Camundongos , Proteína Quinase 9 Ativada por Mitógeno/química , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Simulação de Acoplamento Molecular
5.
Bioorg Med Chem Lett ; 25(16): 3330-7, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26071636

RESUMO

A series of twenty-four 2-benzoyl-6-benzylidenecyclohexanone analogs were synthesized and evaluated for their nitric oxide inhibition and antioxidant activity. Six compounds (3, 8, 10, 17, 18 and 19) were found to exhibit significant NO inhibitory activity in LPS/IFN-induced RAW 264.7 macrophages, of which compound 10 demonstrated the highest activity with the IC50 value of 4.2 ± 0.2 µM. Furthermore, two compounds (10 and 17) displayed antioxidant activity upon both the DPPH scavenging and FRAP analyses. However, none of the 2-benzoyl-6-benzylidenecyclohexanone analogs significantly scavenged NO radical. Structure-activity comparison suggested that 3,4-dihydroxylphenyl ring is crucial for bioactivities of the 2-benzoyl-6-benzylidenecyclohexanone analogs. The results from this study and the reports from previous studies indicated that compound 10 could be a candidate for further investigation on its potential as a new anti-inflammatory agent.


Assuntos
Antioxidantes/análise , Curcumina/química , Cicloexanonas/farmacologia , Macrófagos/efeitos dos fármacos , Óxido Nítrico/antagonistas & inibidores , Animais , Antioxidantes/química , Compostos de Benzilideno/síntese química , Compostos de Benzilideno/química , Compostos de Benzilideno/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cicloexanonas/síntese química , Cicloexanonas/química , Humanos , Concentração Inibidora 50 , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Ácidos Pentanoicos/química , Ácidos Pentanoicos/farmacologia , Células RAW 264.7 , Relação Estrutura-Atividade
6.
Bioorg Med Chem Lett ; 24(16): 3826-34, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25027933

RESUMO

The discovery of potent inhibitors of prostaglandin E2 (PGE2) synthesis in recent years has been proven to be an important game changer in pharmaceutical industry. It is known that excessive production of PGE2 triggers a vast array of biological signals and physiological events that contributes to inflammatory diseases such as rheumatoid arthritis, atherosclerosis, cancer, and pain. In this Letter, we report the synthesis of a series of minor prenylated chalcones and flavonoids which was found to be significantly active in suppressing the PGE2 production secreted by lipopolysaccharide-induced mouse macrophage cells (RAW 264.7). Among the compounds tested, 14b showed a dose-response inhibition of PGE2 production with an IC50 value of 2.1 µM. The suppression upon PGE2 secretion was not due to cell death since 14b did not reduce the cell viability in close proximity to the PGE2 inhibition concentration. The obtained atomic coordinates for the single-crystal XRD of 14b was then applied in the docking simulation to determine the potential important binding interactions with murine COX-2 and mPGES-1 putative binding sites.


Assuntos
Chalconas/farmacologia , Dinoprostona/antagonistas & inibidores , Flavonoides/farmacologia , Animais , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Chalconas/síntese química , Chalconas/química , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/biossíntese , Relação Dose-Resposta a Droga , Flavonoides/síntese química , Flavonoides/química , Humanos , Oxirredutases Intramoleculares/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Modelos Moleculares , Estrutura Molecular , Prostaglandina-E Sintases , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA