Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 13(8)2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34452321

RESUMO

Bluetongue (BT) is a severe and economically important disease of ruminants that is widely distributed around the world, caused by the bluetongue virus (BTV). More than 28 different BTV serotypes have been identified in serum neutralisation tests (SNT), which, along with geographic variants (topotypes) within each serotype, reflect differences in BTV outer-capsid protein VP2. VP2 is the primary target for neutralising antibodies, although the basis for cross-reactions and serological variations between and within BTV serotypes is poorly understood. Recombinant BTV VP2 proteins (rVP2) were expressed in Nicotiana benthamiana, based on sequence data for isolates of thirteen BTV serotypes (primarily from Europe), including three 'novel' serotypes (BTV-25, -26 and -27) and alternative topotypes of four serotypes. Cross-reactions within and between these viruses were explored using rabbit anti-rVP2 sera and post BTV-infection sheep reference-antisera, in I-ELISA (with rVP2 target antigens) and SNT (with reference strains of BTV-1 to -24, -26 and -27). Strong reactions were generally detected with homologous rVP2 proteins or virus strains/serotypes. The sheep antisera were largely serotype-specific in SNT, but more cross-reactive by ELISA. Rabbit antisera were more cross-reactive in SNT, and showed widespread, high titre cross-reactions against homologous and heterologous rVP2 proteins in ELISA. Results were analysed and visualised by antigenic cartography, showing closer relationships in some, but not all cases, between VP2 topotypes within the same serotype, and between serotypes belonging to the same 'VP2 nucleotype'.


Assuntos
Vírus Bluetongue/classificação , Vírus Bluetongue/genética , Proteínas do Capsídeo/classificação , Proteínas do Capsídeo/genética , Reações Cruzadas/imunologia , Sorogrupo , Animais , Antígenos Virais/imunologia , Bluetongue/imunologia , Bluetongue/virologia , Vírus Bluetongue/imunologia , Proteínas do Capsídeo/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Coelhos/imunologia , Ruminantes/imunologia , Sorotipagem , Ovinos/imunologia , Nicotiana/genética
2.
Vaccine X ; 2: 100026, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31384743

RESUMO

Bluetongue is a severe, economically important disease of ruminants that is widely distributed in tropical and temperate regions around the world. It is associated with major production losses, restrictions of animal movements and trade, as well as costs associated with developing and implementing effective surveillance and control measures. Mammalian hosts infected with bluetongue virus (BTV) generate a protective neutralising antibody response targeting the major BTV outer-capsid protein and serotype-specific antigen, VP2. BTV VP2 proteins that have been expressed in plants are soluble, with a native conformation displaying neutralising epitopes and can assemble with other BTV structural proteins to form virus-like particles (VLPs). His-tagged VP2 proteins of BTV serotypes 4 and 8 were transiently expressed in Nicotiana benthamiana then purified by immobilised metal affinity chromatography (IMAC). Antisera from IFNAR -/- mice prime/boost vaccinated with the purified proteins, were shown to contain VP2-specific antibodies by Indirect ELISA (I-ELISA), western blotting and serum neutralisation tests (SNT). Vaccinated mice, subsequently challenged with either the homologous or heterologous BTV serotype, developed viraemia by day 3 post-infection. However, no clinical signs were observed in mice challenged with the homologous serotype (either prime-boost or single-shot vaccinated), all of which survived for the duration of the study. In contrast, all of the vaccinated mice challenged with a heterologous serotype, died, showing no evidence of cross-protection or suppression of viraemia, as detected by real-time RT-qPCR or virus isolation. The induction of protective, serotype-specific neutralising antibodies in IFNAR -/- mice, indicates potential for the use of plant-expressed BTV VP2s as subunit vaccine components, or as a basis for serotype-specific serological assays.

3.
J Gen Virol ; 88(Pt 11): 3078-3088, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17947533

RESUMO

The complete nucleotide sequence of Middelburg virus (MIDV) was determined for strain MIDV-857 from Zimbabwe. The isolation of this virus in 1993 from a horse that died showing severe clinical signs represents the first indication that MIDV can cause severe disease in equids. Full-length cDNA copies of the viral genome were successfully synthesized by an innovative RT-PCR amplification approach using an 'anchor primer' combined with the SMART methodology described previously for the synthesis of full-length cDNA copies from genome segments of dsRNA viruses. The MIDV-857 genome is 11,674 nt, excluding the 5'-terminal cap structure and poly(A) tail (which varies in length from approximately 180 to approximately 220 residues). The organization of the genome is like that of other alphaviruses, including a read-through stop codon between the nsP3 and nsP4 genes. However, phylogenetic analyses of the structural protein amino acid sequences suggested that the MIDV E1 gene was generated by recombination with a Semliki Forest virus-like virus. This hypothesis was supported by bootscanning analysis using a recombination-detection program. The 3' untranslated region of MIDV-857 also contains a 112 nt duplication. This study reports the first full-length sequence of MIDV, which was obtained from a single RT-PCR product.


Assuntos
Alphavirus/genética , Genoma Viral , Regiões 3' não Traduzidas/genética , Alphavirus/isolamento & purificação , Infecções por Alphavirus/veterinária , Animais , Sequência de Bases , Códon de Terminação/genética , Doenças dos Cavalos/virologia , Cavalos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , Capuzes de RNA/genética , RNA Mensageiro/genética , Recombinação Genética , Vírus da Floresta de Semliki/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Baço/virologia , Proteínas não Estruturais Virais/genética , Proteínas Estruturais Virais/genética , Zimbábue
4.
Structure ; 13(1): 17-28, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15642258

RESUMO

Banna virus (BAV: genus Seadornavirus, family Reoviridae) has a double-shelled morphology similar to rotavirus and bluetongue virus. The structure of BAV outer-capsid protein VP9 was determined by X-ray crystallography at 2.6 A resolution, revealing a trimeric molecule, held together by an N-terminal helical bundle, reminiscent of coiled-coil structures found in fusion-active proteins such as HIV gp41. The major domain of VP9 contains stacked beta sheets with marked structural similarities to the receptor binding protein VP8 of rotavirus. Anti-VP9 antibodies neutralize viral infectivity, and, remarkably, pretreatment of cells with trimeric VP9 increased viral infectivity, indicating that VP9 is involved in virus attachment to cell surface and subsequent internalization. Sequence similarities were also detected between BAV VP10 and VP5 portion of rotavirus VP4, suggesting that the receptor binding and internalization apparatus, which is a single gene product activated by proteoloysis in rotavirus, is the product of two separate genome segments in BAV.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Coltivirus/genética , Proteínas do Core Viral/química , Proteínas do Core Viral/metabolismo , Sequência de Aminoácidos , Western Blotting , Proteínas do Capsídeo/genética , Coltivirus/classificação , Cristalografia por Raios X , Imuno-Histoquímica , Modelos Moleculares , Dados de Sequência Molecular , Testes de Neutralização , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Rotavirus/química , Homologia de Sequência de Aminoácidos , Proteínas do Core Viral/genética , Proteínas do Core Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA