Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(43): e2213450119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36256818

RESUMO

Bacterial catabolic pathways have considerable potential as industrial biocatalysts for the valorization of lignin, a major component of plant-derived biomass. Here, we describe a pathway responsible for the catabolism of acetovanillone, a major component of several industrial lignin streams. Rhodococcus rhodochrous GD02 was previously isolated for growth on acetovanillone. A high-quality genome sequence of GD02 was generated. Transcriptomic analyses revealed a cluster of eight genes up-regulated during growth on acetovanillone and 4-hydroxyacetophenone, as well as a two-gene cluster up-regulated during growth on acetophenone. Bioinformatic analyses predicted that the hydroxyphenylethanone (Hpe) pathway proceeds via phosphorylation and carboxylation, before ß-elimination yields vanillate from acetovanillone or 4-hydroxybenzoate from 4-hydroxyacetophenone. Consistent with this prediction, the kinase, HpeHI, phosphorylated acetovanillone and 4-hydroxyacetophenone. Furthermore, HpeCBA, a biotin-dependent enzyme, catalyzed the ATP-dependent carboxylation of 4-phospho-acetovanillone but not acetovanillone. The carboxylase's specificity for 4-phospho-acetophenone (kcat/KM = 34 ± 2 mM-1 s-1) was approximately an order of magnitude higher than for 4-phospho-acetovanillone. HpeD catalyzed the efficient dephosphorylation of the carboxylated products. GD02 grew on a preparation of pine lignin produced by oxidative catalytic fractionation, depleting all of the acetovanillone, vanillin, and vanillate. Genomic and metagenomic searches indicated that the Hpe pathway occurs in a relatively small number of bacteria. This study facilitates the design of bacterial strains for biocatalytic applications by identifying a pathway for the degradation of acetovanillone.


Assuntos
Biotina , Lignina , Lignina/metabolismo , Acetofenonas , Trifosfato de Adenosina
2.
Plast Reconstr Surg ; 147(1S-2): 50S-61S, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33347075

RESUMO

BACKGROUND: The human skin microbiome is highly personalized, depending on, for example, body site, age, gender, and lifestyle factors. The temporal stability of an individual's skin microbiome-its resiliency and robustness over months and years-is also a personalized feature of the microbiome. The authors measured the temporal stability of the facial skin microbiome in a large cohort of subjects. In addition to measuring microbiome dynamics, they tracked facial skin condition using noninvasive, objective imaging and biophysical measures to identify significant facial features associated with temporal changes in microbiome diversity and composition. METHODS: The authors used 16S ribosomal RNA amplicon sequencing to track cheek and forehead skin microbiome diversity and composition annually over a 2-year period (2017-2019) in 115 healthy adult men and women. Skin metadata included facial features, such as wrinkles, hyperpigmentation, porphyrins, and skin color tone, as well as biophysical parameters for stratum corneum barrier function, pH, hydration, and elasticity. RESULTS: Across the subject population, the facial skin microbiome composition and diversity were relatively stable, showing minor variation over the 2-year period. However, for some subjects, composition, diversity, and relative abundance of specific organisms showed substantial changes from one year to the next, and these changes were associated with changes in stratum corneum barrier function and follicular porphyrins. CONCLUSIONS: For healthy people, facial skin microbiome diversity and composition are relatively stable from year to year. Tracking the temporal changes in the microbiome along with skin phenotypic changes allows for a deeper understanding of the skin microbiome's role in health and disease. These results should be helpful in the design of longer-term intervention trials with microbiome-based skin care treatments.


Assuntos
Face/microbiologia , Microbiota/fisiologia , Envelhecimento da Pele/fisiologia , Pele/microbiologia , Adulto , DNA Bacteriano/isolamento & purificação , Face/diagnóstico por imagem , Feminino , Voluntários Saudáveis , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S , Pele/diagnóstico por imagem , Fatores de Tempo
3.
PLoS One ; 15(2): e0228633, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32027700

RESUMO

Obesity has reached epidemic proportions and is often accompanied by elevated levels of pro-inflammatory cytokines that promote many chronic diseases, including cancer. However, not all obese people develop these diseases and it would be very helpful to identify those at high risk early on so that preventative measures can be instituted. We performed an extensive evaluation of the effects of obesity on inflammatory markers, on innate and adaptive immune responses, and on blood cell composition to identify markers that might be useful in distinguishing those at elevated risk of cancer. Plasma samples from 42 volunteers with a BMI>35 had significantly higher CRP, PGE2, IL-1RA, IL-6 and IL-17 levels than 34 volunteers with normal BMIs. Of the cytokines and chemokines tested, only IL-17 was significantly higher in men with a BMI>35 than women with a BMI>35. As well, only IL-17 was significantly higher in those with a BMI>35 that had type 2 diabetes versus those without type 2 diabetes. Whole blood samples from participants with a BMI>35, when challenged with E. coli, produced significantly higher levels of IL-1RA while HSV-1 challenge resulted in significantly elevated IL-1RA and VEGF, and a non-significant increase in G-CSF and IL-8 levels. T cell activation of PBMCs, via anti-CD3 plus anti-CD28, resulted in significantly higher IFNγ production from volunteers with a BMI>35. In terms of blood cells, red blood cell distribution width (RDW), monocytes, granulocytes, CD4+T cells and Tregs were all significantly higher while, natural killer (NK) and CD8+ T cells were all significantly lower in the BMI>35 cohort, suggesting that obesity may reduce the ability to kill nascent tumor cells. Importantly, however, there was considerable person-to-person variation amongst participants with a BMI>35, with some volunteers showing markedly different values from controls and others showing normal levels of many parameters measured. These person-to-person variations may prove useful in identifying those at high risk of developing cancer.


Assuntos
Biomarcadores/sangue , Neoplasias/etiologia , Obesidade/sangue , Obesidade/complicações , Adulto , Células Sanguíneas , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Imunidade , Inflamação , Masculino , Neoplasias/sangue , Medição de Risco
4.
J Immunol ; 202(3): 956-965, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30617224

RESUMO

The cytokine IL-22 is rapidly induced at barrier surfaces where it regulates host-protective antimicrobial immunity and tissue repair but can also enhance disease severity in some chronic inflammatory settings. Using the chronic Salmonella gastroenteritis model, Ab-mediated neutralization of IL-22 impaired intestinal epithelial barrier integrity and, consequently, exaggerated expression of proinflammatory cytokines. As disease normally resolved, neutralization of IL-22 caused luminal narrowing of the cecum-a feature reminiscent of fibrotic strictures seen in Crohn disease patients. Corresponding to the exaggerated immunopathology caused by IL-22 suppression, Salmonella burdens in the gut were reduced. This enhanced inflammation and pathogen clearance was associated with alterations in gut microbiome composition, including the overgrowth of Bacteroides acidifaciens Our findings thus indicate that IL-22 plays a protective role by limiting infection-induced gut immunopathology but can also lead to persistent pathogen colonization.


Assuntos
Gastroenterite/imunologia , Microbioma Gastrointestinal , Interleucinas/imunologia , Salmonelose Animal/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Anticorpos Neutralizantes/imunologia , Bacteroides , Ceco/imunologia , Ceco/patologia , Doença de Crohn/imunologia , Doença de Crohn/patologia , Citocinas/imunologia , Gastroenterite/microbiologia , Inflamação , Interleucinas/antagonistas & inibidores , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Indução de Remissão , Salmonelose Animal/terapia , Salmonella typhimurium , Interleucina 22
5.
Sci Rep ; 5: 8495, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25683155

RESUMO

Extensive regions of interior Douglas-fir (Pseudotsuga menziesii var. glauca, IDF) forests in North America are being damaged by drought and western spruce budworm (Choristoneura occidentalis). This damage is resulting from warmer and drier summers associated with climate change. To test whether defoliated IDF can directly transfer resources to ponderosa pine (Pinus ponderosae) regenerating nearby, thus aiding in forest recovery, we examined photosynthetic carbon transfer and defense enzyme response. We grew pairs of ectomycorrhizal IDF 'donor' and ponderosa pine 'receiver' seedlings in pots and isolated transfer pathways by comparing 35 µm, 0.5 µm and no mesh treatments; we then stressed IDF donors either through manual defoliation or infestation by the budworm. We found that manual defoliation of IDF donors led to transfer of photosynthetic carbon to neighboring receivers through mycorrhizal networks, but not through soil or root pathways. Both manual and insect defoliation of donors led to increased activity of peroxidase, polyphenol oxidase and superoxide dismutase in the ponderosa pine receivers, via a mechanism primarily dependent on the mycorrhizal network. These findings indicate that IDF can transfer resources and stress signals to interspecific neighbors, suggesting ectomycorrhizal networks can serve as agents of interspecific communication facilitating recovery and succession of forests after disturbance.


Assuntos
Carbono/metabolismo , Micorrizas , Pinus ponderosa/fisiologia , Pseudotsuga/fisiologia , Estresse Fisiológico , Biomassa , Raízes de Plantas , Plântula
6.
Am J Respir Crit Care Med ; 185(10): 1073-80, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22427533

RESUMO

RATIONALE: Based on surface brushings and bronchoalveolar lavage fluid, Hilty and coworkers demonstrated microbiomes in the human lung characteristic of asthma and chronic obstructive pulmonary disease (COPD), which have now been confirmed by others. OBJECTIVES: To extend these findings to human lung tissue samples. METHODS: DNA from lung tissue samples was obtained from nonsmokers (n = 8); smokers without COPD (n = 8); patients with very severe COPD (Global Initiative for COPD [GOLD] 4) (n = 8); and patients with cystic fibrosis (CF) (n = 8). The latter served as a positive control, with sterile water as a negative control. All bacterial community analyses were based on polymerase chain reaction amplifying 16S rRNA gene fragments. Total bacterial populations were measured by quantitative polymerase chain reaction and bacterial community composition was assessed by terminal restriction fragment length polymorphism analysis and pyrotag sequencing. MEASUREMENT AND MAIN RESULTS: Total bacterial populations within lung tissue were small (20-1,252 bacterial cells per 1,000 human cells) but greater in all four sample groups versus the negative control group (P < 0.001). Terminal restriction fragment length polymorphism analysis and sequencing distinguished three distinct bacterial community compositions: one common to the nonsmoker and smoker groups, a second to the GOLD 4 group, and the third to the CF-positive control group. Pyrotag sequencing identified greater than 1,400 unique bacterial sequences and showed an increase in the Firmicutes phylum in GOLD 4 patients versus all other groups (P < 0.003) attributable to an increase in the Lactobacillus genus (P < 0.0007). CONCLUSIONS: There is a detectable bacterial community within human lung tissue that changes in patients with very severe COPD.


Assuntos
Pulmão/microbiologia , Metagenoma , Doença Pulmonar Obstrutiva Crônica/microbiologia , Adulto , Estudos de Casos e Controles , Fibrose Cística/microbiologia , DNA Bacteriano/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Análise de Componente Principal , RNA Ribossômico 16S , Análise de Sequência de DNA , Índice de Gravidade de Doença , Fumar
7.
BMC Genomics ; 9: 600, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-19077282

RESUMO

BACKGROUND: Members of the genus Rhodococcus are frequently found in soil and other natural environments and are highly resistant to stresses common in those environments. The accumulation of storage compounds permits cells to survive and metabolically adapt during fluctuating environmental conditions. The purpose of this study was to perform a genome-wide bioinformatic analysis of key genes encoding metabolism of diverse storage compounds by Rhodococcus jostii RHA1 and to examine its ability to synthesize and accumulate triacylglycerols (TAG), wax esters, polyhydroxyalkanoates (PHA), glycogen and polyphosphate (PolyP). RESULTS: We identified in the RHA1 genome: 14 genes encoding putative wax ester synthase/acyl-CoA:diacylglycerol acyltransferase enzymes (WS/DGATs) likely involved in TAG and wax esters biosynthesis; a total of 54 genes coding for putative lipase/esterase enzymes possibly involved in TAG and wax ester degradation; 3 sets of genes encoding PHA synthases and PHA depolymerases; 6 genes encoding key enzymes for glycogen metabolism, one gene coding for a putative polyphosphate kinase and 3 putative exopolyphosphatase genes. Where possible, key amino acid residues in the above proteins (generally in active sites, effectors binding sites or substrate binding sites) were identified in order to support gene identification. RHA1 cells grown under N-limiting conditions, accumulated TAG as the main storage compounds plus wax esters, PHA (with 3-hydroxybutyrate and 3-hydroxyvalerate monomers), glycogen and PolyP. Rhodococcus members were previously known to accumulate TAG, wax esters, PHAs and polyP, but this is the first report of glycogen accumulation in this genus. CONCLUSION: RHA1 possess key genes to accumulate diverse storage compounds. Under nitrogen-limiting conditions lipids are the principal storage compounds. An extensive capacity to synthesize and metabolize storage compounds appears to contribute versatility to RHA1 in its responses to environmental stresses.


Assuntos
Genes Bacterianos , Rhodococcus/genética , Rhodococcus/metabolismo , Aciltransferases/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Diacilglicerol O-Aciltransferase/genética , Esterases/genética , Glicogênio/biossíntese , Lipase/genética , Lipídeos/biossíntese , Dados de Sequência Molecular , Poli-Hidroxialcanoatos/biossíntese , Polifosfatos/metabolismo , Alinhamento de Sequência , Triglicerídeos/biossíntese , Ceras/metabolismo
8.
J Bacteriol ; 190(1): 37-47, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17965160

RESUMO

Proteomics and targeted gene disruption were used to investigate the catabolism of benzene, styrene, biphenyl, and ethylbenzene in Rhodococcus jostii RHA1, a well-studied soil bacterium whose potent polychlorinated biphenyl (PCB)-transforming properties are partly due to the presence of the related Bph and Etb pathways. Of 151 identified proteins, 22 Bph/Etb proteins were among the most abundant in biphenyl-, ethylbenzene-, benzene-, and styrene-grown cells. Cells grown on biphenyl, ethylbenzene, or benzene contained both Bph and Etb enzymes and at least two sets of lower Bph pathway enzymes. By contrast, styrene-grown cells contained no Etb enzymes and only one set of lower Bph pathway enzymes. Gene disruption established that biphenyl dioxygenase (BPDO) was essential for growth of RHA1 on benzene or styrene but that ethylbenzene dioxygenase (EBDO) was not required for growth on any of the tested substrates. Moreover, whole-cell assays of the delta bphAa and etbAa1::cmrA etbAa2::aphII mutants demonstrated that while both dioxygenases preferentially transformed biphenyl, only BPDO transformed styrene. Deletion of pcaL of the beta-ketoadipate pathway disrupted growth on benzene but not other substrates. Thus, styrene and benzene are degraded via meta- and ortho-cleavage, respectively. Finally, catalases were more abundant during growth on nonpolar aromatic compounds than on aromatic acids. This suggests that the relaxed specificities of BPDO and EBDO that enable RHA1 to grow on a range of compounds come at the cost of increased uncoupling during the latter's initial transformation. The stress response may augment RHA1's ability to degrade PCBs and other pollutants that induce similar uncoupling.


Assuntos
Benzeno/metabolismo , Dioxigenases/metabolismo , Rhodococcus/metabolismo , Estireno/metabolismo , Proteínas de Bactérias/metabolismo , Derivados de Benzeno/metabolismo , Compostos de Bifenilo/metabolismo , Primers do DNA , Dioxigenases/genética , Hidroxilação , Cinética , Reação em Cadeia da Polimerase , Proteoma , Rhodococcus/classificação , Rhodococcus/genética , Rhodococcus/crescimento & desenvolvimento , Especificidade por Substrato
9.
Appl Environ Microbiol ; 73(21): 6930-8, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17873074

RESUMO

Rhodococci are common soil heterotrophs that possess diverse functional enzymatic activities with economic and ecological significance. In this study, the correlation between gene expression and biological removal of the water contaminant N-nitrosodimethylamine (NDMA) is explored. NDMA is a hydrophilic, potent carcinogen that has gained recent notoriety due to its environmental persistence and emergence as a widespread micropollutant in the subsurface environment. In this study, we demonstrate that Rhodococcus sp. strain RHA1 can constitutively degrade NDMA and that activity toward this compound is enhanced by approximately 500-fold after growth on propane. Transcriptomic analysis of RHA1 and reverse transcriptase quantitative PCR assays demonstrate that growth on propane elicits the upregulation of gene clusters associated with (i) the oxidation of propane and (ii) the oxidation of substituted benzenes. Deletion mutagenesis of prmA, the gene encoding the large hydroxylase component of propane monooxygenase, abolished both growth on propane and removal of NDMA. These results demonstrate that propane monooxygenase is responsible for NDMA degradation by RHA1 and explain the enhanced cometabolic degradation of NDMA in the presence of propane.


Assuntos
Dimetilnitrosamina/metabolismo , Oxigenases de Função Mista/metabolismo , Propano/metabolismo , Rhodococcus/enzimologia , Biodegradação Ambiental , Indução Enzimática , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Oxigenases de Função Mista/genética , Rhodococcus/metabolismo , Poluentes do Solo/metabolismo
10.
Proc Natl Acad Sci U S A ; 104(6): 1947-52, 2007 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-17264217

RESUMO

Rhodococcus sp. strain RHA1, a soil bacterium related to Mycobacterium tuberculosis, degrades an exceptionally broad range of organic compounds. Transcriptomic analysis of cholesterol-grown RHA1 revealed a catabolic pathway predicted to proceed via 4-androstene-3,17-dione and 3,4-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione (3,4-DHSA). Inactivation of each of the hsaC, supAB, and mce4 genes in RHA1 substantiated their roles in cholesterol catabolism. Moreover, the hsaC(-) mutant accumulated 3,4-DHSA, indicating that HsaC(RHA1), formerly annotated as a biphenyl-degrading dioxygenase, catalyzes the oxygenolytic cleavage of steroid ring A. Bioinformatic analyses revealed that 51 rhodococcal genes specifically expressed during growth on cholesterol, including all predicted to specify the catabolism of rings A and B, are conserved within an 82-gene cluster in M. tuberculosis H37Rv and Mycobacterium bovis bacillus Calmette-Guérin. M. bovis bacillus Calmette-Guérin grew on cholesterol, and hsaC and kshA were up-regulated under these conditions. Heterologously produced HsaC(H37Rv) and HsaD(H37Rv) transformed 3,4-DHSA and its ring-cleaved product, respectively, with apparent specificities approximately 40-fold higher than for the corresponding biphenyl metabolites. Overall, we annotated 28 RHA1 genes and proposed physiological roles for a similar number of mycobacterial genes. During survival of M. tuberculosis in the macrophage, these genes are specifically expressed, and many appear to be essential. We have delineated a complete suite of genes necessary for microbial steroid degradation, and pathogenic mycobacteria have been shown to catabolize cholesterol. The results suggest that cholesterol metabolism is central to M. tuberculosis's unusual ability to survive in macrophages and provide insights into potential targets for novel therapeutics.


Assuntos
Colesterol/genética , Colesterol/metabolismo , Hidrolases/genética , Macrófagos/microbiologia , Família Multigênica , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/genética , Rhodococcus/genética , Hidrolases/metabolismo , Mycobacterium tuberculosis/metabolismo , RNA Mensageiro/metabolismo , Rhodococcus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA