Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 14738, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30283009

RESUMO

The ability of fluorescent proteins (FPs) to fold robustly is fundamental to the autocatalytic formation of the chromophore. While the importance of the tertiary protein structure is well appreciated, the impact of individual amino acid mutations for FPs is often not intuitive and requires direct testing. In this study, we describe the engineering of a monomeric photoswitchable FP, moxMaple3, for use in oxidizing cellular environments, especially the eukaryotic secretory pathway. Surprisingly, a point mutation to replace a cysteine substantially improved the yield of correctly folded FP capable of chromophore formation, regardless of cellular environment. The improved folding of moxMaple3 increases the fraction of visibly tagged fusion proteins, as well as FP performance in PALM super-resolution microscopy, and thus makes moxMaple3 a robust monomeric FP choice for PALM and optical highlighting applications.


Assuntos
Cisteína/química , Células Eucarióticas/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas Luminescentes/química , Aminoácidos/química , Proteínas de Fluorescência Verde/genética , Humanos , Proteínas Luminescentes/genética , Microscopia de Fluorescência/métodos , Oxirredução , Dobramento de Proteína , Estrutura Terciária de Proteína/genética
2.
Nat Biotechnol ; 36(1): 81-88, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29251729

RESUMO

Genetic engineering by viral infection of single cells is useful to study complex systems such as the brain. However, available methods for infecting single cells have drawbacks that limit their applications. Here we describe 'virus stamping', in which viruses are reversibly bound to a delivery vehicle-a functionalized glass pipette tip or magnetic nanoparticles in a pipette-that is brought into physical contact with the target cell on a surface or in tissue, using mechanical or magnetic forces. Different single cells in the same tissue can be infected with different viruses and an individual cell can be simultaneously infected with different viruses. We use rabies, lenti, herpes simplex, and adeno-associated viruses to drive expression of fluorescent markers or a calcium indicator in target cells in cell culture, mouse retina, human brain organoid, and the brains of live mice. Virus stamping provides a versatile solution for targeted single-cell infection of diverse cell types, both in vitro and in vivo.


Assuntos
Encéfalo/virologia , Nanopartículas de Magnetita/administração & dosagem , Análise de Célula Única/métodos , Vírus/genética , Animais , Engenharia Genética/tendências , Humanos , Nanopartículas de Magnetita/química , Camundongos , Organoides/metabolismo , Organoides/virologia , Retina/metabolismo , Retina/virologia , Distribuição Tecidual , Viroses/genética , Viroses/metabolismo , Replicação Viral/genética
3.
Sci Rep ; 7(1): 14490, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29101326

RESUMO

In pharmacological research the development of promising lead compounds requires a detailed understanding of the dynamics of disease progression. However, for many diseases, such as kidney fibrosis, gaining such understanding requires complex real-time, multi-dimensional analysis of diseased and healthy tissue. To allow for such studies with increased throughput we established a dextran hydrogel-based in vitro 3D co-culture as a disease model for kidney fibrosis aimed at the discovery of compounds modulating the epithelial/mesenchymal crosstalk. This platform mimics a simplified pathological renal microenvironment at the interface between tubular epithelial cells and surrounding quiescent fibroblasts. We combined this 3D technology with epithelial reporter cell lines expressing fluorescent biomarkers in order to visualize pathophysiological cell state changes resulting from toxin-mediated chemical injury. Epithelial cell damage onset was robustly detected by image-based monitoring, and injured epithelial spheroids induced myofibroblast differentiation of co-cultured quiescent human fibroblasts. The presented 3D co-culture system therefore provides a unique model system for screening of novel therapeutic molecules capable to interfere and modulate the dialogue between epithelial and mesenchymal cells.


Assuntos
Comunicação Celular/fisiologia , Técnicas de Cocultura , Nefropatias/metabolismo , Rim/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Técnicas de Cocultura/métodos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibrose/metabolismo , Fibrose/patologia , Expressão Gênica , Humanos , Rim/patologia , Nefropatias/patologia , Modelos Biológicos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA