Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 376(3): 736-48, 2008 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-18187152

RESUMO

Interruptions in the repeating (Gly-X1-X2)(n) amino acid sequence pattern are found in the triple-helix domains of all non-fibrillar collagens, and perturbations to the triple-helix at such sites are likely to play a role in collagen higher-order structure and function. This study defines the sequence features and structural consequences of the most common interruption, where one residue is missing from the tripeptide pattern, Gly-X1-X2-Gly-AA(1)-Gly-X1-X2, designated G1G interruptions. Residues found within G1G interruptions are predominantly hydrophobic (70%), followed by a significant amount of charged residues (16%), and the Gly-X1-X2 triplets flanking the interruption are atypical. Studies on peptide models indicate the degree of destabilization is much greater when Pro is in the interruption, GP, than when hydrophobic residues (GF, GY) are present, and a rigid Gly-Pro-Hyp tripeptide adjacent to the interruption leads to greater destabilization than a flexible Gly-Ala-Ala sequence. Modeling based on NMR data indicates the Phe residue within a GF interruption is located on the outside of the triple helix. The G1G interruptions resemble a previously studied collagen interruption GPOGAAVMGPO, designated G4G-type, in that both are destabilizing, but allow continuation of rod-like triple helices and maintenance of the single residue stagger throughout the imperfection, with a loss of axial register of the superhelix on both sides. Both kinds of interruptions result in a highly localized perturbation in hydrogen bonding and dihedral angles, but the hydrophobic residue of a G4G interruption packs near the central axis of the superhelix, while the hydrophobic residue of a G1G interruption is located on the triple-helix surface. The different structural consequences of G1G and G4G interruptions in the repeating tripeptide sequence pattern suggest a physical basis for their differential susceptibility to matrix metalloproteinases in type X collagen.


Assuntos
Colágeno/química , Sequência de Aminoácidos , Dicroísmo Circular , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Conformação Proteica
2.
J Biol Chem ; 281(44): 33283-90, 2006 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-16963782

RESUMO

Interest in self-association of peptides and proteins is motivated by an interest in the mechanism of physiologically higher order assembly of proteins such as collagen as well as the mechanism of pathological aggregation such as beta-amyloid formation. The triple helical form of (Pro-Hyp-Gly)(10), a peptide that has proved a useful model for molecular features of collagen, was found to self-associate, and its association properties are reported here. Turbidity experiments indicate that the triple helical peptide self-assembles at neutral pH via a nucleation-growth mechanism, with a critical concentration near 1 mM. The associated form is more stable than individual molecules by about 25 degrees C, and the association is reversible. The rate of self-association increases with temperature, supporting an entropically favored process. After self-association, (Pro-Hyp-Gly)(10) forms branched filamentous structures, in contrast with the highly ordered axially periodic structure of collagen fibrils. Yet a number of characteristics of triple helix assembly for the peptide resemble those of collagen fibril formation. These include promotion of fibril formation by neutral pH and increasing temperature; inhibition by sugars; and a requirement for hydroxyproline. It is suggested that these similar features for peptide and collagen self-association are based on common lateral underlying interactions between triple helical molecules mediated by hydrogen-bonded hydration networks involving hydroxyproline.


Assuntos
Colágeno/química , Colágeno/metabolismo , Varredura Diferencial de Calorimetria , Metabolismo dos Carboidratos , Colágeno/ultraestrutura , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Peptídeos/química , Peptídeos/metabolismo , Temperatura
3.
J Biol Chem ; 281(25): 17197-17202, 2006 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-16613845

RESUMO

Fibrillar collagens have an absolute requirement for Gly as every 3rd residue, whereas breaks in the Gly-X-Y repeating pattern are found normally in the triple helix domains of non-fibrillar collagens, such as type IV collagen in basement membranes. In this study, a model 30-mer peptide is designed to include the interruption GPOGAAVMGPOGPO found in the alpha5 chain of type IV collagen. The GAAVM peptide forms a stable triple helix, with Tm= 29 degrees C. When compared with a control peptide with Gly as every 3rd residue, the GAAVM peptide has a marked decrease in the 225 nm maximum of its CD spectrum and a 10 degrees C drop in stability. A 50% decrease in calorimetric enthalpy is observed, which may result from disruption of ordered water structure anchored by regularly placed backbone carbonyls. NMR studies on specific 15N-labeled residues within the GAAVM peptide indicate a normal triple helical structure for Gly-Pro-Hyp residues flanking the break. The sequence within the break is not disordered but shows altered hydrogen exchange rates and an abnormal Val chemical shift. It was previously reported that a peptide designed to model a similar kind of interruption in the peptide (Pro-Hyp-Gly)10, (GPOGPOPOGPO), is unable to form a stable triple helix, and replacement of GAA by GPO or VM by PO within the GAAVM break decreases the stability. Thus, rigid imino acids are unfavorable within a break, despite their favorable stabilization of the triple helix itself. These results suggest some non-random structure typical of this category of breaks in the Gly-X-Y repeat of the triple helix.


Assuntos
Colágeno Tipo IV/química , Glicina/química , Sequência de Aminoácidos , Varredura Diferencial de Calorimetria , Carbono/química , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Peptídeos/química , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA