Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 47(3): 215-226, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30593544

RESUMO

In the present study, the beagle dog was evaluated as a preclinical model to investigate organic anion transporting polypeptide (OATP)-mediated hepatic clearance. In vitro studies were performed with nine OATP substrates in three lots of plated male dog hepatocytes ± OATP inhibitor cocktail to determine total uptake clearance (CLuptake) and total and unbound cell-to-medium concentration ratio (Kpuu). In vivo intrinsic hepatic clearances (CLint,H) were determined following intravenous drug administration (0.1 mg/kg) in male beagle dogs. The in vitro parameters were compared with those previously reported in plated human, monkey, and rat hepatocytes; the ability of cross-species scaling factors to improve prediction of human in vivo clearance was assessed. CLuptake in dog hepatocytes ranged from 9.4 to 135 µl/min/106 cells for fexofenadine and telmisartan, respectively. Active process contributed >75% to CLuptake for 5/9 drugs. Rosuvastatin and valsartan showed Kpuu > 10, whereas cerivastatin, pitavastatin, repaglinide, and telmisartan had Kpuu < 5. The extent of hepatocellular binding in dog was consistent with other preclinical species and humans. The bias (2.73-fold) obtained from comparison of predicted versus in vivo dog CLint,H was applied as an average empirical scaling factor (ESFav) for in vitro-in vivo extrapolation of human CLint,H The ESFav based on dog reduced underprediction of human CLint,H for the same data set (geometric mean fold error = 2.1), highlighting its utility as a preclinical model to investigate OATP-mediated uptake. The ESFav from all preclinical species resulted in comparable improvement of human clearance prediction, in contrast to drug-specific empirical scalars, rationalized by species differences in expression and/or relative contribution of particular transporters to drug hepatic uptake.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Taxa de Depuração Metabólica , Transportadores de Ânions Orgânicos/metabolismo , Preparações Farmacêuticas/metabolismo , Especificidade da Espécie , Animais , Cães , Hepatócitos/metabolismo , Humanos , Infusões Intravenosas , Fígado/citologia , Fígado/metabolismo , Masculino , Modelos Animais , Modelos Biológicos , Preparações Farmacêuticas/administração & dosagem
2.
Drug Metab Dispos ; 43(5): 756-61, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25755052

RESUMO

To characterize the hydrolysis of the peptide prodrug pomaglumetad methionil (LY2140023; (1R,4S,5S,6S)-4-(L-methionylamino)-2-thiabicyclo[3.1.0]hexane-4,6-dicarboxylic acid 2,2-dioxide), to the active drug LY404039 [(1R,4S,5S,6S)-4-amino-2-thiabicyclo[3.1.0]hexane-4,6-dicarboxylic acid 2,2-dioxide], a series of in vitro studies were performed in various matrices, including human intestinal, liver, kidney homogenate, and human plasma. The studies were performed to determine the tissue(s) and enzyme(s) responsible for the conversion of the prodrug to the active molecule. This could enable an assessment of the risk for drug interactions, an evaluation of pharmacogenomic implications, as well as the development of a Physiologically Based Pharmacokinetic (PBPK) model for formation of the active drug. Of the matrices examined, hydrolysis of pomaglumetad methionil was observed in intestinal and kidney homogenate preparations and plasma, but not in liver homogenate. Clearance values calculated after applying standard scaling factors suggest the intestine and kidney as primary sites of hydrolysis. Studies with peptidase inhibitors were performed in an attempt to identify the enzyme(s) catalyzing the conversion. Near complete inhibition of LY404039 formation was observed in intestinal and kidney homogenate and human plasma with the selective dehydropeptidase1 (DPEP1) inhibitor cilastatin. Human recombinant DPEP1 was expressed and shown to catalyze the hydrolysis, which was completely inhibited by cilastatin. These studies demonstrate pomaglumetad methionil can be converted to LY404039 via one or multiple enzymes completely inhibited by cilastatin, likely DPEP1, in plasma, the intestine, and the kidney, with the plasma and kidney involved in the clearance of the circulating prodrug. These experiments define a strategy for the characterization of enzymes responsible for the metabolism of other peptide-like compounds.


Assuntos
Aminoácidos/metabolismo , Peptídeos/metabolismo , Pró-Fármacos/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Cilastatina/farmacologia , Óxidos S-Cíclicos/metabolismo , Dipeptidases/antagonistas & inibidores , Proteínas Ligadas por GPI/antagonistas & inibidores , Humanos , Hidrólise
3.
Drug Metab Dispos ; 42(6): 1008-15, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24658455

RESUMO

The glycogen synthase kinase-3 inhibitor LY2090314 specifically impaired CYP2B6 activity during in vitro evaluation of cytochrome P450 (P450) enzyme induction in human hepatocytes. CYP2B6 catalytic activity was significantly decreased following 3-day incubation with 0.1-10 µM LY2090314, on average by 64.3% ± 5.0% at 10 µM. These levels of LY2090314 exposure were not cytotoxic to hepatocytes and did not reduce CYP1A2 and CYP3A activities. LY2090314 was not a time-dependent CYP2B6 inhibitor, did not otherwise inhibit enzyme activity at concentrations ≤10 µM, and was not metabolized by CYP2B6. Thus, mechanism-based inactivation or other direct interaction with the enzyme could not explain the observed reduction in CYP2B6 activity. Instead, LY2090314 significantly reduced CYP2B6 mRNA levels (Imax = 61.9% ± 1.4%; IC50 = 0.049 ± 0.043 µM), which were significantly correlated with catalytic activity (r(2) = 0.87, slope = 0.77; Imax = 57.0% ± 10.8%, IC50 = 0.057 ± 0.027 µM). Direct inhibition of constitutive androstane receptor by LY2090314 is conceptually consistent with the observed CYP2B6 transcriptional suppression (Imax = 100.0% ± 10.8% and 57.1% ± 2.4%; IC50 = 2.5 ± 1.2 and 2.1 ± 0.4 µM for isoforms 1 and 3, respectively) and may be sufficiently extensive to overcome the weak but potent activation of pregnane X receptor by ≤10 µM LY2090314 (19.3% ± 2.2% of maximal rifampin response, apparent EC50 = 1.2 ± 1.1 nM). The clinical relevance of these findings was evaluated through physiologically based pharmacokinetic model simulations. CYP2B6 suppression by LY2090314 is not expected clinically, with a projected <1% decrease in hepatic enzyme activity and <1% decrease in hydroxybupropion exposure following bupropion coadministration. However, simulations showed that observed CYP2B6 suppression could be clinically relevant for a drug with different pharmacokinetic properties from LY2090314.


Assuntos
Citocromo P-450 CYP2B6/biossíntese , Citocromo P-450 CYP2B6/genética , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Drogas em Investigação/farmacologia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia , Bupropiona/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Interações Medicamentosas/fisiologia , Drogas em Investigação/química , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Masculino , Maleimidas/farmacologia
4.
J Pharmacol Exp Ther ; 327(1): 248-57, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18650247

RESUMO

Vincristine is metabolized to one primary metabolite, M1, by cDNA-expressed CYP3A4 and CYP3A5 and by CYP3A enzymes in human liver microsomes. For both systems, CYP3A5 is predicted to mediate approximately 80% of the CYP3A metabolism for individuals with high CYP3A5 expression (at least one CYP3A5(*)1 allele). In the current study, the role of CYP3A5 was quantified in the metabolism of vincristine with human cryopreserved hepatocytes. The hepatocytes were genotyped for common CYP3A5 allelic variants (CYP3A5(*)3, CYP3A5(*)6, and CYP3A5(*)7) to predict CYP3A5 expression. For each hepatocyte preparation, the rates of vincristine depletion and metabolite formation were quantified. Whereas human hepatocytes with predicted low CYP3A5 expression did not detectably metabolize vincristine, human hepatocytes with predicted high CYP3A5 expression metabolized vincristine to one primary metabolite, M1. In paired experiments using cryopreserved hepatocytes from the same donor, vincristine was incubated with intact cells and cell lysates supplemented with NADPH. The rates of M1 formation were 4 to 69-fold higher for the cell lysates compared with the intact cells. For one representative donor, the intact cells had a 3-fold higher K(m) value and a 3-fold lower V(max) value for M1 formation compared with the cell lysates. Thus, the rate of M1 formation in the hepatocytes may be influenced by the rate of vincristine translocation across the plasma membrane. We conclude that genetically determined CYP3A5 expression in human cryopreserved hepatocytes plays a major role in vincristine metabolism.


Assuntos
Antineoplásicos Fitogênicos/metabolismo , Citocromo P-450 CYP3A/fisiologia , Hepatócitos/metabolismo , Vincristina/metabolismo , Criopreservação , Citocromo P-450 CYP3A/genética , Inibidores do Citocromo P-450 CYP3A , Genótipo , Humanos , Taxa de Depuração Metabólica , Esteroide Hidroxilases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA