Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Oral Health ; 23(1): 643, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670290

RESUMO

OBJECTIVE: Intra-oral scans and gypsum cast scans (OS) are widely used in orthodontics, prosthetics, implantology, and orthognathic surgery to plan patient-specific treatments, which require teeth segmentations with high accuracy and resolution. Manual teeth segmentation, the gold standard up until now, is time-consuming, tedious, and observer-dependent. This study aims to develop an automated teeth segmentation and labeling system using deep learning. MATERIAL AND METHODS: As a reference, 1750 OS were manually segmented and labeled. A deep-learning approach based on PointCNN and 3D U-net in combination with a rule-based heuristic algorithm and a combinatorial search algorithm was trained and validated on 1400 OS. Subsequently, the trained algorithm was applied to a test set consisting of 350 OS. The intersection over union (IoU), as a measure of accuracy, was calculated to quantify the degree of similarity between the annotated ground truth and the model predictions. RESULTS: The model achieved accurate teeth segmentations with a mean IoU score of 0.915. The FDI labels of the teeth were predicted with a mean accuracy of 0.894. The optical inspection showed excellent position agreements between the automatically and manually segmented teeth components. Minor flaws were mostly seen at the edges. CONCLUSION: The proposed method forms a promising foundation for time-effective and observer-independent teeth segmentation and labeling on intra-oral scans. CLINICAL SIGNIFICANCE: Deep learning may assist clinicians in virtual treatment planning in orthodontics, prosthetics, implantology, and orthognathic surgery. The impact of using such models in clinical practice should be explored.


Assuntos
Aprendizado Profundo , Humanos , Algoritmos , Sulfato de Cálcio , Assistência Odontológica , Exame Físico
2.
J Dent ; 132: 104475, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36870441

RESUMO

OBJECTIVE: Quantitative analysis of the volume and shape of the temporomandibular joint (TMJ) using cone-beam computed tomography (CBCT) requires accurate segmentation of the mandibular condyles and the glenoid fossae. This study aimed to develop and validate an automated segmentation tool based on a deep learning algorithm for accurate 3D reconstruction of the TMJ. MATERIALS AND METHODS: A three-step deep-learning approach based on a 3D U-net was developed to segment the condyles and glenoid fossae on CBCT datasets. Three 3D U-Nets were utilized for region of interest (ROI) determination, bone segmentation, and TMJ classification. The AI-based algorithm was trained and validated on 154 manually segmented CBCT images. Two independent observers and the AI algorithm segmented the TMJs of a test set of 8 CBCTs. The time required for the segmentation and accuracy metrics (intersection of union, DICE, etc.) was calculated to quantify the degree of similarity between the manual segmentations (ground truth) and the performances of the AI models. RESULTS: The AI segmentation achieved an intersection over union (IoU) of 0.955 and 0.935 for the condyles and glenoid fossa, respectively. The IoU of the two independent observers for manual condyle segmentation were 0.895 and 0.928, respectively (p<0.05). The mean time required for the AI segmentation was 3.6 s (SD 0.9), whereas the two observers needed 378.9 s (SD 204.9) and 571.6 s (SD 257.4), respectively (p<0.001). CONCLUSION: The AI-based automated segmentation tool segmented the mandibular condyles and glenoid fossae with high accuracy, speed, and consistency. Potential limited robustness and generalizability are risks that cannot be ruled out, as the algorithms were trained on scans from orthognathic surgery patients derived from just one type of CBCT scanner. CLINICAL SIGNIFICANCE: The incorporation of the AI-based segmentation tool into diagnostic software could facilitate 3D qualitative and quantitative analysis of TMJs in a clinical setting, particularly for the diagnosis of TMJ disorders and longitudinal follow-up.


Assuntos
Aprendizado Profundo , Transtornos da Articulação Temporomandibular , Humanos , Articulação Temporomandibular/diagnóstico por imagem , Côndilo Mandibular/diagnóstico por imagem , Côndilo Mandibular/cirurgia , Transtornos da Articulação Temporomandibular/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos
3.
J Oral Maxillofac Surg ; 74(6): 1114-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26899478

RESUMO

PURPOSE: Autotransplantation of premolars is a good treatment option for young patients who have missing teeth. This study evaluated the use of a preoperatively 3-dimensional (3D)-printed replica of the donor tooth that functions as a surgical guide during autotransplantation. MATERIALS AND METHODS: Five consecutive procedures were prospectively observed. Transplantations of maxillary premolars with optimal root development were included in this study. A 3D-printed replica of the donor tooth was used to prepare a precisely fitting new alveolus at the recipient site before extracting the donor tooth. Procedure time, extra-alveolar time, and number of attempts needed to achieve a good fit of the donor tooth in the new alveolus were recorded. RESULTS: For each transplantation procedure, the surgical time was shorter than 30 minutes. An immediate good fit of the donor tooth in the new alveolus was achieved with an extra-alveolar time shorter than 1 minute for all transplantations. CONCLUSION: These results show that the extra-alveolar time is very short when the surgical guide is used; therefore, the chance of iatrogenic damage to the donor tooth is minimized. The use of a replica of the donor tooth makes the autotransplantation procedure easier for the surgeon and facilitates optimal placement of the transplant.


Assuntos
Dente Pré-Molar/transplante , Impressão Tridimensional , Adolescente , Dente Pré-Molar/diagnóstico por imagem , Criança , Tomografia Computadorizada de Feixe Cônico , Implantação Dentária/instrumentação , Implantação Dentária/métodos , Feminino , Humanos , Masculino , Duração da Cirurgia , Estudos Prospectivos , Cirurgia Assistida por Computador/métodos , Titânio , Transplante Autólogo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA