Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Cell Mol Med ; 28(17): e70026, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39252436

RESUMO

Castleman disease (CD) is a rare lymphoproliferative disorder, with non-specific clinical manifestations, often delayed diagnosis and treatment, which pose a significant challenge in the present times. Patients diagnosed with this disease have poor prognosis due to the limited treatment options. Multicentric CD occurs at multiple lymph node stations and is associated with a proinflammatory response that leads to the development of the so-called 'B symptoms'. IL-6 seems to be a key cytokine involved in various manifestations such as lymphadenopathies, hepatosplenomegaly, and polyclonal hypergammaglobulinemia. Its levels correlate with the activity of the disease. Other consequences of MCD include increased fibrinogen levels leading to deep vein thrombosis and thromboembolic disorders, high hepcidin levels causing anaemia, elevated VEGF levels promoting angiogenesis and vascular permeability, which, along with hypoalbuminemia, induce oedema, ascites, pleural and pericardial effusions, and in severe cases, generalized anasarca. In extreme cases multiple organ failure can occur, often resulting in death. We propose the use of continuous renal replacement therapy (CRRT) in managing severe multicentric CD. Our arguments are based on the principles that CRRT is able to remove IL-6 from circulation thus attenuating the cytokine storm, can influence hepcidin levels, and reduction in oedema, and is often used in multiple organ failure to regain homeostasis control. Therefore, it could be used as a therapy or bridge therapy in severe cases. To sustain our hypothesis with evidence, we have gathered several studies from the literature confirming the successful removal of cytokines, especially IL-6 from circulation, which can be used as a starting point.


Assuntos
Hiperplasia do Linfonodo Gigante , Terapia de Substituição Renal Contínua , Hiperplasia do Linfonodo Gigante/terapia , Humanos , Terapia de Substituição Renal Contínua/métodos , Interleucina-6/sangue , Interleucina-6/metabolismo , Hepcidinas/metabolismo
2.
J Immunother Cancer ; 12(8)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39142716

RESUMO

BACKGROUND: Anti-PD-1 antibodies have revolutionized cancer immunotherapy due to their ability to induce long-lasting complete remissions in a proportion of patients. Current research efforts are attempting to identify biomarkers and suitable combination partners to predict or further improve the activity of immune checkpoint inhibitors. Antibody-cytokine fusions are a class of pharmaceuticals that showed the potential to boost the anticancer properties of other immunotherapies. Extradomain A-fibronectin (EDA-FN), which is expressed in most solid and hematological tumors but is virtually undetectable in healthy adult tissues, is an attractive target for the delivery of cytokine at the site of the disease. METHODS: In this work, we describe the generation and characterization of a novel interleukin-7-based fusion protein targeting EDA-FN termed F8(scDb)-IL7. The product consists of the F8 antibody specific to the alternatively spliced EDA of FN in the single-chain diabody (scDb) format fused to human IL-7. RESULTS: F8(scDb)-IL7 efficiently stimulates human peripheral blood mononuclear cells in vitro. Moreover, the product significantly increases the expression of T Cell Factor 1 (TCF-1) on CD8+T cells compared with an IL2-fusion protein. TCF-1 has emerged as a pivotal transcription factor that influences the durability and potency of immune responses against tumors. In preclinical cancer models, F8(scDb)-IL7 demonstrates potent single-agent activity and eradicates sarcoma lesions when combined with anti-PD-1. CONCLUSIONS: Our results provide the rationale to explore the combination of F8(scDb)-IL7 with anti-PD-1 antibodies for the treatment of patients with cancer.


Assuntos
Linfócitos T CD8-Positivos , Fibronectinas , Interleucina-7 , Humanos , Fibronectinas/metabolismo , Fibronectinas/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Interleucina-7/metabolismo , Interleucina-7/farmacologia , Animais , Camundongos , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Regulação para Cima , Feminino , Linhagem Celular Tumoral
3.
J Clin Med ; 12(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37763039

RESUMO

OBJECTIVE: Our primary objective was to describe the baseline characteristics, main reasons for intensive care unit (ICU) admission, and interventions required in the ICU across patients who received CAR-T cell immunotherapy. The secondary objectives were to evaluate different outcomes (ICU mortality) across patients admitted to the ICU after having received CAR-T cell therapy. MATERIALS AND METHODS: We performed a medical literature review, which included MEDLINE, Embase, and Cochrane Library, of studies published from the inception of the databases until 2022. We conducted a systematic review with meta-analyses of proportions of several studies, including CAR-T cell-treated patients who required ICU admission. Outcomes in the meta-analysis were evaluated using the random-effects model. RESULTS: We included four studies and analyzed several outcomes, including baseline characteristics and ICU-related findings. CAR-T cell recipients admitted to the ICU are predominantly males (62% CI-95% (57-66)). Of the total CAR-T cell recipients, 4% CI-95% (3-5) die in the hospital, and 6% CI-95% (4-9) of those admitted to the ICU subsequently die. One of the main reasons for ICU admission is acute kidney injury (AKI) in 15% CI-95% (10-19) of cases and acute respiratory failure in 10% CI-95% (6-13) of cases. Regarding the interventions initiated in the ICU, 18% CI-95% (13-22) of the CAR-T recipients required invasive mechanical ventilation during their ICU stay, 23% CI-95% (16-30) required infusion of vasoactive drugs, and 1% CI-95% (0.1-3) required renal replacement therapy (RRT). 18% CI-95% (13-22) of the initially discharged patients were readmitted to the ICU within 30 days, and the mean length of hospital stay is 22 days CI-95% (19-25). The results paint a current state of matter in CAR-T cell recipients admitted to the ICU. CONCLUSIONS: To better understand immunotherapy-related complications from an ICU standpoint, acknowledge the deteriorating patient on the ward, reduce the ICU admission rate, advance ICU care, and improve the outcomes of these patients, a standard of care and research regarding CAR-T cell-based immunotherapies should be created. Studies that are looking from the perspective of intensive care are highly warranted because the available literature regarding this area is scarce.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120216, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34364036

RESUMO

This study highlights the potential of surface-enhanced Raman scattering (SERS) to differentiate between B-cell lymphoma (BCL), T-cell lymphoma (TCL), lymph node metastasis of melanoma (Met) and control (Ctr) samples based on the specific SERS signal of DNA extracted from lymph node tissue biopsy. Differences in the methylation profiles as well as the specific interaction of malignant and non-malignant DNA with the metal nanostructure are captured in specific variations of the band at 1005 cm-1, attributed to 5-methylcytosine and the band at 730 cm-1, attributed to adenine. Thus, using the area ratio of these two SERS marker bands as input for univariate classification, an area under the curve (AUC) of 0.70 was achieved in differentiating between malignant and non-malignant DNA. In addition, DNA from the BCL and TCL groups exhibited differences in the area of the SERS band at 730 cm-1, yielding an AUC of 0.84 in differentiating between these two lymphadenopathies. Lastly, using multivariate data analysis techniques, an overall accuracy of 94.7% was achieved in the differential diagnosis between the BCL, TCL, Met and Ctr groups. These results pave the way towards the implementation of SERS as a novel tool in the clinical setting for improving the diagnosis of malignant lymphadenopathy.


Assuntos
Metilação de DNA , Linfadenopatia , DNA/genética , Diagnóstico Diferencial , Humanos , Análise Espectral Raman
6.
Colloids Surf B Biointerfaces ; 208: 112064, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34517219

RESUMO

Surface-enhanced Raman scattering (SERS) is emerging as a novel strategy for biofluid analysis. In this review, we delineate four experimental SERS protocols that are frequently used for the profiling of biofluids: 1) liquid SERS for the detection of purine metabolites; 2) iodide-modified liquid SERS for the detection of proteins; 3) dried SERS for the detection of both purine metabolites and proteins; 4) resonant Raman for the detection of carotenoids. To explain the selectivity of each experimental SERS protocol, we introduce a heuristic model for the chemisorption of analytes mediated by adsorbed ions (adions) onto the SERS substrate. Next, we show that the promising results of SERS liquid biopsy stem from the fact that the concentration levels of purine metabolites, proteins and carotenoids are informative of the cellular turnover rate, inflammation, and oxidative stress, respectively. These processes are perturbed in virtually every disease, from cancer to autoimmune maladies. Finally, we review recent SERS liquid biopsy studies and discuss future steps that are required for translating SERS in the clinical setting.


Assuntos
Neoplasias , Análise Espectral Raman , Humanos , Biópsia Líquida , Proteínas
7.
Front Bioeng Biotechnol ; 9: 703268, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368097

RESUMO

Here we show that surface-enhanced Raman scattering (SERS) analysis captures the relative hypomethylation of DNA from patients with acute leukemia associated with Down syndrome (AL-DS) compared with patients diagnosed with transient leukemia associated with Down syndrome (TL-DS), an information inferred from the area under the SERS band at 1005 cm-1 attributed to 5-methycytosine. The receiver operating characteristic (ROC) analysis of the area under the SERS band at 1005 cm-1 yielded an area under the curve (AUC) of 0.77 in differentiating between the AL-DS and TL-DS groups. In addition, we showed that DNA from patients with non-DS myeloproliferative neoplasm (non-DS-MPN) is hypomethylated compared to non-DS-AL, the area under the SERS band at 1005 cm-1 yielding an AUC of 0.78 in separating between non-DS-MPN and non-DS-AL. Overall, in this study, the area of the 1005 cm-1 DNA SERS marker band shows a stepwise decrease in DNA global methylation as cells progress from a pre-leukemia to a full-blown acute leukemia, highlighting thus the potential of SERS as an emerging method of analyzing the methylation landscape of DNA in the context of leukemia genesis and progression.

8.
Ann Transl Med ; 9(1): 68, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33553361

RESUMO

Acute leukemias (both myeloid and lymphoblastic) are a group of diseases for which each year more successful therapies are implemented. However, in a subset of cases the overall survival (OS) is still exceptionally low due to the infiltration of leukemic cells in the central nervous system (CNS) and the subsequent formation of brain tumors. The CNS involvement is more common in acute lymphocytic leukemia (ALL), than in adult acute myeloid leukemia (AML), although the rates for the second case might be underestimated. The main reasons for CNS invasion are related to the expression of specific adhesion molecules (VLA-4, ICAM-1, VCAM, L-selectin, PECAM-1, CD18, LFA-1, CD58, CD44, CXCL12) by a subpopulation of leukemic cells, called "sticky cells" which have the ability to interact and adhere to endothelial cells. Moreover, the microenvironment becomes hypoxic and together with secretion of VEGF-A by ALL or AML cells the permeability of vasculature in the bone marrow increases, coupled with the disruption of blood brain barrier. There is a single subpopulation of leukemia cells, called leukemia stem cells (LSCs) that is able to resist in the new microenvironment due to its high adaptability. The LCSs enter into the arachnoid, migrate, and intensively proliferate in cerebrospinal fluid (CSF) and consequently infiltrate perivascular spaces and brain parenchyma. Moreover, the CNS is an immune privileged site that also protects leukemic cells from chemotherapy. CD56/NCAM is the most important surface molecule often overexpressed by leukemic stem cells that offers them the ability to infiltrate in the CNS. Although asymptomatic or with unspecific symptoms, CNS leukemia should be assessed in both AML/ALL patients, through a combination of flow cytometry and cytological analysis of CSF. Intrathecal therapy (ITT) is a preventive measure for CNS involvement in AML and ALL, still much research is needed in finding the appropriate target that would dramatically lower CNS involvement in acute leukemia.

9.
J Clin Med ; 9(11)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142779

RESUMO

One of the limitations of cancer research has been the restricted focus on tumor cells and the omission of other non-malignant cells that are constitutive elements of this systemic disease. Current research is focused on the bidirectional communication between tumor cells and other components of the tumor microenvironment (TME), such as immune and endothelial cells, and nerves. A major success of this bidirectional approach has been the development of immunotherapy. Recently, a more complex landscape involving a multi-lateral communication between the non-malignant components of the TME started to emerge. A prime example is the interplay between immune and endothelial cells, which led to the approval of anti-vascular endothelial growth factor-therapy combined with immune checkpoint inhibitors and classical chemotherapy in non-small cell lung cancer. Hence, a paradigm shift approach is to characterize the crosstalk between different non-malignant components of the TME and understand their role in tumorigenesis. In this perspective, we discuss the interplay between nerves and immune cells within the TME. In particular, we focus on exosomes and microRNAs as a systemic, rapid and dynamic communication channel between tumor cells, nerves and immune cells contributing to cancer progression. Finally, we discuss how combinatorial therapies blocking this tumorigenic cross-talk could lead to improved outcomes for cancer patients.

10.
Int J Nanomedicine ; 15: 4811-4824, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32753867

RESUMO

PURPOSE: Magnetic resonance imaging (MRI) contrast agents are pharmaceuticals that enable a better visualization of internal body structures. In this study, we present the synthesis, MRI signal enhancement capabilities, in vitro as well as in vivo cytotoxicity results of gold-coated iron oxide nanoparticles (Fe3O4@AuNPs) as potential contrast agents. METHODS: Fe3O4@AuNPs were obtained by synthesizing iron oxide nanoparticles and gradually coating them with gold. The obtained Fe3O4@AuNPs were characterized by spectroscopies, transmission electron microscopy (TEM) and energy dispersive X-ray diffraction. The effect of the nanoparticles on the MRI signal was tested using a 7T Bruker PharmaScan system. Cytotoxicity tests were made in vitro on Fe3O4@AuNP-treated retinal pigment epithelium cells by WST-1 tests and in vivo by following histopathological changes in rats after injection of Fe3O4@AuNPs. RESULTS: Stable Fe3O4@AuNPs were successfully prepared following a simple and fast protocol (<1h worktime) and identified using TEM. The cytotoxicity tests on cells have shown biocompatibility of Fe3O4@AuNPs at small concentrations of Fe (<1.95×10-8 mg/cell). Whereas, at higher Fe concentrations (eg 7.5×10-8 mg/cell), cell viability decreased to 80.88±5.03%, showing a mild cytotoxic effect. MRI tests on rats showed an optimal Fe3O4@AuNPs concentration of 6mg/100g body weight to obtain high-quality images. The histopathological studies revealed significant transient inflammatory responses in the time range from 2 hours to 14 days after injection and focal cellular alterations in several organs, with the lung being the most affected organ. These results were confirmed by hyperspectral microscopic imaging of the same, but unstained tissues. In most organs, the inflammatory responses and sublethal cellular damage appeared to be transitory, except for the kidneys, where the glomerular damage indicated progression towards glomerular sclerosis. CONCLUSION: The obtained stable, gold covered, iron oxide nanoparticles with reduced cytotoxicity, gave a negative T2 signal in the MRI, which makes them suitable for candidates as contrast agent in small animal MRI applications.


Assuntos
Meios de Contraste/química , Compostos Férricos/química , Ouro/química , Imageamento por Ressonância Magnética , Nanopartículas Metálicas/química , Animais , Sobrevivência Celular , Endocitose , Inflamação/patologia , Masculino , Nanopartículas Metálicas/ultraestrutura , Ratos Wistar , Difração de Raios X
11.
Front Oncol ; 10: 1024, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695677

RESUMO

Acute promyelocytic leukemia (APL) is characterized by a unique chromosome translocation t(15;17)(q24;q21), which leads to the PML/RARA gene fusion formation. However, it is acknowledged that this rearrangement alone is not able to induce the whole leukemic phenotype. In addition, epigenetic processes, such as DNA methylation, may play a crucial role in leukemia pathogenesis. DNA methylation, catalyzed by DNA methyltransferases (DNMTs), involves the covalent transfer of a methyl group (-CH3) to the fifth carbon of the cytosine ring in the CpG dinucleotide and results in the formation of 5-methylcytosine (5-mC). The aberrant gene promoter methylation can be an alternative mechanism of tumor suppressor gene inactivation. Understanding cancer epigenetics and its pivotal role in oncogenesis, can offer us not only attractive targets for epigenetic treatment but can also provide powerful tools in monitoring the disease and estimating the prognosis. Several genes of interest, such as RARA, RARB, p15, p16, have been studied in APL and their methylation status was correlated with potential diagnostic and prognostic significance. In the present manuscript we comprehensively examine the current knowledge regarding DNA methylation in APL pathogenesis. We also discuss the perspectives of using the DNA methylation patterns as reliable biomarkers for measurable residual disease (MRD) monitoring and as a predictor of relapse. This work also highlights the possibility of detecting aberrant methylation profiles of circulating tumor DNA (ctDNA) through liquid biopsies, using the conventional methods, such as methylation-specific polymerase chain reaction (MS-PCR), sequencing methods, but also revolutionary methods, such as surface-enhanced Raman spectroscopy (SERS).

12.
Diagnostics (Basel) ; 10(5)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365516

RESUMO

Acute myeloid leukemia (AML) is a hematologic malignancy characterized by abnormal proliferation and a lack of differentiation of myeloid blasts. Considering the dismal prognosis this disease presents, several efforts have been made to better classify it and offer a tailored treatment to each subtype. This has been formally done by the World Health Organization (WHO) with the AML classification schemes from 2008 and 2016. Nonetheless, there are still mutations that are not currently included in the WHO AML classification, as in the case of some mutations that influence methylation. In this regard, the present study aimed to determine if some of the mutations that influence DNA methylation can be clustered together regarding methylation, expression, and clinical profile. Data from the TCGA LAML cohort were downloaded via cBioPortal. The analysis was performed using R 3.5.2, and the necessary packages for classical statistics, dimensionality reduction, and machine learning. We included only patients that presented mutations in DNMT3A, TET2, IDH1/2, ASXL1, WT1, and KMT2A. Afterwards, mutations that were present in too few patients were removed from the analysis, thus including a total of 57 AML patients. We observed that regarding expression, methylation, and clinical profile, patients with mutated TET2, IDH1/2, and WT1 presented a high degree of similarity, indicating the equivalence that these mutations present between themselves. Nonetheless, we did not observe this similarity between DNMT3A- and KMT2A-mutated AML. Moreover, when comparing the hypermethylating group with the hypomethylating one, we also observed important differences regarding expression, methylation, and clinical profile. In the current manuscript we offer additional arguments for the similarity of the studied hypermethylating mutations and suggest that those should be clustered together in further classifications. The hypermethylating and hypomethylating groups formed above were shown to be different from each other considering overall survival, methylation profile, expression profile, and clinical characteristics. In this manuscript, we present additional arguments for the similarity of the effect generated by TET2, IDH1/2, and WT1 mutations in AML patients. Thus, we hypothesize that hypermethylating mutations skew the AML cells to a similar phenotype with a possible sensitivity to hypermethylating agents.

13.
J Clin Med ; 9(1)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941009

RESUMO

Early diagnosis based on screening is recognized as one of the most efficient ways of mitigating cancer-associated morbidity and mortality. Therefore, reliable but cost-effective methodologies are needed. By using a portable Raman spectrometer, a small and easily transportable instrument, the needs of modern diagnosis in terms of rapidity, ease of use and flexibility are met. In this study, we analyzed the diagnostic accuracy yielded by the surface-enhanced Raman scattering (SERS)-based profiling of serum, performed with a portable Raman device operating in a real-life hospital environment, in the case of 53 patients with gastrointestinal tumors and 25 control subjects. The SERS spectra of serum displayed intense bands attributed to carotenoids and purine metabolites such as uric acid, xanthine and hypoxanthine, with different intensities between the cancer and control groups. Based on principal component analysis-quadratic discriminant analysis (PCA-QDA), the cancer and control groups were classified with an accuracy of 76.92%. By combining SERS spectra with general inflammatory markers such as C-reactive protein levels, neutrophil counts, platelet counts and hemoglobin levels, the discrimination accuracy was increased to 83.33%. This study highlights the potential of SERS-based liquid biopsy for the point-of-care diagnosis of gastrointestinal tumors using a portable Raman device operating in a clinical setting.

14.
Front Oncol ; 9: 1137, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31709194

RESUMO

In multiple myeloma the mutational profile is mainly represented by translocations involving chromosome 14 and by single nucleotide mutations, frequently involving genes implicated in the mitogen activated protein kinase (MAPK) pathway, as KRAS, NRAS, and, less frequently, BRAF. Because KRAS/NRAS/BRAF mutations are associated with a higher number of mutations per patient, we hypothesize that this group of patients could benefit from therapy with checkpoint inhibitors because of the higher frequency of neo-antigens that this group would present. This might also true for IMiD therapy, because of their activatory effect on T cells. Because, KRAS/NRAS/BRAF are members of the MAPK pathway, this subgroup of patients would also benefit from inhibitors of MAPK, either directly on the specific mutation or through downstream targeting of MEK1/2 or ERK1/2 to account for a possible compensatory collateral signaling that might activate as response to upstream inhibition.

15.
Anal Bioanal Chem ; 411(29): 7907-7913, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31745615

RESUMO

In this label-free surface-enhanced Raman scattering (SERS) study of genomic DNA, we demonstrate that the cancer-specific DNA methylation pattern translates into specific spectral differences. Thus, DNA extracted from an acute myeloid leukemia (AML) cell line presented a decreased intensity of the 1005 cm-1 band of 5-methylcytosine compared to normal DNA, in line with the well-described hypomethylation of cancer DNA. The unique methylation pattern of cancer DNA also influences the DNA adsorption geometry, resulting in higher adenine SERS intensities for cancer DNA. The possibility of detecting cancer DNA based on its SERS spectrum was validated on peripheral blood genomic DNA samples from n = 17 AML patients and n = 17 control samples, yielding an overall classification of 82% based on the 1005 cm-1 band of 5-methylcytosine. By demonstrating the potential of SERS in assessing the methylation status in the case of real-life DNA samples, the study paves the way for novel methods of diagnosing cancer. Graphical abstract.


Assuntos
Metilação de DNA , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Análise Espectral Raman/métodos , Linhagem Celular Tumoral , Feminino , Humanos , Leucemia Mieloide Aguda/patologia , Masculino
16.
Front Oncol ; 9: 863, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608223

RESUMO

Chronic myelogenous leukemia (CML) is a malignancy of the myeloid cell lineage characterized by a recurrent chromosomal abnormality: the Philadelphia chromosome, which results from the reciprocal translocation of the chromosomes 9 and 22. The Philadelphia chromosome contains a fusion gene called BCR-ABL1. The BCR-ABL1 codes for an aberrantly functioning tyrosine kinase that drives the malignant proliferation of the founding clone. The advent of tyrosine kinase inhibitors (TKI) represents a landmark in the treatment of CML, that has led to tremendous improvement in the remission and survival rates. Since the introduction of imatinib, the first TKI, several other TKI have been approved that further broadened the arsenal against CML. Patients treated with TKIs require sensitive monitoring of BCR-ABL1 transcripts with quantitative real-time polymerase chain reaction (qRT-PCT), which has become an essential part of managing patients with CML. In this review, we discuss the importance of the BCR-ABL1 assay, and we highlight the growing importance of BCR-ABL1 dynamics. We also introduce a mathematical correction for the BCR-ABL1 assay that could help homogenizing the use of the ABL1 as a control gene. Finally, we discuss the growing body of evidence concerning treatment-free remission. Along with the continuous improvement in the therapeutic arsenal against CML, the molecular monitoring of CML represents the avant-garde in the struggle to make CML a curable disease.

17.
J Clin Med ; 8(8)2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390838

RESUMO

During recent decades, understanding of the molecular mechanisms of acute lymphoblastic leukemia (ALL) has improved considerably, resulting in better risk stratification of patients and increased survival rates. Age, white blood cell count (WBC), and specific genetic abnormalities are the most important factors that define risk groups for ALL. State-of-the-art diagnosis of ALL requires cytological and cytogenetical analyses, as well as flow cytometry and high-throughput sequencing assays. An important aspect in the diagnostic characterization of patients with ALL is the identification of the Philadelphia (Ph) chromosome, which warrants the addition of tyrosine kinase inhibitors (TKI) to the chemotherapy backbone. Data that support the benefit of hematopoietic stem cell transplantation (HSCT) in high risk patient subsets or in late relapse patients are still questioned and have yet to be determined conclusive. This article presents the newly published data in ALL workup and treatment, putting it into perspective for the attending physician in hematology and oncology.

18.
Int J Nanomedicine ; 14: 6165-6178, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447558

RESUMO

PURPOSE: Surface-enhanced Raman scattering (SERS) spectroscopy on serum and other biofluids for cancer diagnosis represents an emerging field, which has shown promising preliminary results in several types of malignancies. The purpose of this study was to demonstrate that SERS spectroscopy on serum can be employed for the differential diagnosis between five of the leading malignancies, ie, breast, colorectal, lung, ovarian and oral cancer. PATIENTS AND METHODS: Serum samples were acquired from healthy volunteers (n=39) and from patients diagnosed with breast (n=42), colorectal (n=109), lung (n=33), oral (n=17), and ovarian cancer (n=13), comprising n=253 samples in total. SERS spectra were acquired using a 532 nm laser line as excitation source, while the SERS substrates were represented by Ag nanoparticles synthesized by reduction with hydroxylamine. The classification accuracy yielded by SERS was assessed by principal component analysis-linear discriminant analysis (PCA-LDA). RESULTS: The sensitivity and specificity in discriminating between cancer patients and controls was 98% and 91%, respectively. Cancer samples were correctly assigned to their corresponding cancer types with an accuracy of 88% for oral cancer, 86% for colorectal cancer, 80% for ovarian cancer, 76% for breast cancer and 59% for lung cancer. CONCLUSION: SERS on serum represents a promising strategy of diagnosing cancer which can discriminate between cancer patients and controls, as well as between cancer types such as breast, colorectal, lung ovarian and oral cancer.


Assuntos
Neoplasias/diagnóstico , Análise Espectral Raman/métodos , Idoso , Neoplasias da Mama/sangue , Neoplasias da Mama/diagnóstico , Estudos de Casos e Controles , Neoplasias Colorretais/sangue , Neoplasias Colorretais/diagnóstico , Diagnóstico Diferencial , Análise Discriminante , Feminino , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/diagnóstico , Masculino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Pessoa de Meia-Idade , Neoplasias Bucais/sangue , Neoplasias Bucais/diagnóstico , Neoplasias/sangue , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/diagnóstico , Análise de Componente Principal , Prata/química
19.
Anal Bioanal Chem ; 411(22): 5877-5883, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31214753

RESUMO

In this preliminary study, we employed surface-enhanced Raman scattering (SERS) of saliva and serum samples for diagnosing Sjogren's syndrome (SjS), a systemic autoimmune disease characterized by dryness of the mouth and eyes. The saliva and serum samples from n = 29 patients with SjS and n = 21 controls were deproteinized with methanol and then the SERS spectra were acquired using silver nanoparticles synthesized by reduction with hydroxylamine hydrochloride. In the case of both saliva and serum, the SERS spectra were dominated by similar bands attributed to purine metabolites such as uric acid, xanthine, and hypoxanthine. Principal component analysis-linear discriminant analysis (PCA-LDA) models built from SERS spectra of saliva and serum yielded an overall classification accuracy of 94% and 98%, respectively. These results suggest that the SERS analysis of saliva and serum is able to capture the complex biochemical perturbations that accompany the onset of SjS, a strategy which could be translated in the future into a novel point-of-care diagnosis method. Graphical abstract.


Assuntos
Biópsia Líquida/métodos , Saliva/metabolismo , Síndrome de Sjogren/patologia , Análise Espectral Raman/métodos , Estudos de Casos e Controles , Humanos , Síndrome de Sjogren/sangue , Síndrome de Sjogren/metabolismo
20.
Lasers Med Sci ; 34(4): 827-834, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30666523

RESUMO

Raman spectroscopy is a type of vibrational spectroscopy based on the inelastic scattering of photons, which has attracted much attention due to its potential clinical application in rheumatology. In this review, we discuss the typical spectral features of cartilage, bone, synovial fluid, and pathologic crystal deposits, as well as methods of amplifying the Raman signal of biofluids such as drop-coating deposition Raman spectroscopy. Further, applications of Raman and drop-coating deposition Raman spectroscopy in osteoarthritis are described, highlighting the clinical potential of these methods. We also discuss the role of Raman and related techniques in analyzing pathologic crystals such as monosodium urate, calcium pyrophosphate dihydrate, and hydroxyapatite. The results presented in this review demonstrate that Raman spectroscopy has grown past the stage of proof-of-concept, especially in the case of pathologies involving crystal depositions such as gout and calcium pyrophosphate deposition disease , for which the method has been validated on large number of samples. As the medical community becomes more and more aware of Raman spectroscopy, it is envisioned that it will become a standard technique in the near future.


Assuntos
Reumatologia , Análise Espectral Raman/métodos , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Calcinose/diagnóstico , Calcinose/diagnóstico por imagem , Cartilagem Articular/diagnóstico por imagem , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA