Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 58(10): 836-846.e6, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37084728

RESUMO

Glioblastoma is thought to originate from neural stem cells (NSCs) of the subventricular zone that acquire genetic alterations. In the adult brain, NSCs are largely quiescent, suggesting that deregulation of quiescence maintenance may be a prerequisite for tumor initiation. Although inactivation of the tumor suppressor p53 is a frequent event in gliomagenesis, whether or how it affects quiescent NSCs (qNSCs) remains unclear. Here, we show that p53 maintains quiescence by inducing fatty-acid oxidation (FAO) and that acute p53 deletion in qNSCs results in their premature activation to a proliferative state. Mechanistically, this occurs through direct transcriptional induction of PPARGC1a, which in turn activates PPARα to upregulate FAO genes. Dietary supplementation with fish oil containing omega-3 fatty acids, natural PPARα ligands, fully restores quiescence of p53-deficient NSCs and delays tumor initiation in a glioblastoma mouse model. Thus, diet can silence glioblastoma driver mutations, with important implications for cancer prevention.


Assuntos
Glioblastoma , Células-Tronco Neurais , Camundongos , Animais , Proteína Supressora de Tumor p53 , PPAR alfa , Dieta , Mutação
2.
Cell Rep ; 42(4): 112396, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37061917

RESUMO

Emerging evidence indicates that metabolic dysregulation drives prostate cancer (PCa) progression and metastasis. AMP-activated protein kinase (AMPK) is a master regulator of metabolism, although its role in PCa remains unclear. Here, we show that genetic and pharmacological activation of AMPK provides a protective effect on PCa progression in vivo. We show that AMPK activation induces PGC1α expression, leading to catabolic metabolic reprogramming of PCa cells. This catabolic state is characterized by increased mitochondrial gene expression, increased fatty acid oxidation, decreased lipogenic potential, decreased cell proliferation, and decreased cell invasiveness. Together, these changes inhibit PCa disease progression. Additionally, we identify a gene network involved in cell cycle regulation that is inhibited by AMPK activation. Strikingly, we show a correlation between this gene network and PGC1α gene expression in human PCa. Taken together, our findings support the use of AMPK activators for clinical treatment of PCa to improve patient outcome.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias da Próstata , Masculino , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Lipogênese , Metabolismo dos Lipídeos , Neoplasias da Próstata/patologia
3.
Nat Commun ; 11(1): 4653, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938923

RESUMO

Cancer cells demand excess nutrients to support their proliferation, but how tumours exploit extracellular amino acids during systemic metabolic perturbations remain incompletely understood. Here, we use a Drosophila model of high-sugar diet (HSD)-enhanced tumourigenesis to uncover a systemic host-tumour metabolic circuit that supports tumour growth. We demonstrate coordinate induction of systemic muscle wasting with tumour-autonomous Yorkie-mediated SLC36-family amino acid transporter expression as a proline-scavenging programme to drive tumourigenesis. We identify Indole-3-propionic acid as an optimal amino acid derivative to rationally target the proline-dependency of tumour growth. Insights from this whole-animal Drosophila model provide a powerful approach towards the identification and therapeutic exploitation of the amino acid vulnerabilities of tumourigenesis in the context of a perturbed systemic metabolic network.


Assuntos
Açúcares da Dieta/efeitos adversos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Neoplasias Experimentais/fisiopatologia , Prolina/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Animais Geneticamente Modificados , Carcinogênese , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Hemolinfa/efeitos dos fármacos , Hemolinfa/metabolismo , Larva , Debilidade Muscular/induzido quimicamente , Debilidade Muscular/patologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/patologia , Neoplasias Experimentais/etiologia , Proteínas Nucleares/genética , Receptores Proteína Tirosina Quinases/metabolismo , Transativadores/genética , Proteínas de Sinalização YAP , Proteínas ras/genética
4.
J Integr Plant Biol ; 60(5): 397-411, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29247597

RESUMO

Species and hybrids of Eucalyptus are the world's most widely planted hardwood trees. They are cultivated across a wide range of latitudes and therefore environmental conditions. In this context, comprehensive metabolomics approaches have been used to assess how different temperature regimes may affect the metabolism of three species of Eucalyptus, E. dunnii, E. grandis and E. pellita. Young plants were grown for 53 d in the greenhouse and then transferred to growth chambers at 10°C, 20°C or 30°C for another 7 d. In all three species the leaf chlorophyll content was positively correlated to temperature, and in E. pellita the highest temperature also resulted in a significant increase in stem biomass. Comprehensive metabolomics was performed using untargeted gas chromatography mass spectrometry (GC-MS) and liquid chromatography (LC)-MS. This approach enabled the comparison of the relative abundance of 88 polar primary metabolites from GC-MS and 625 semi-polar secondary metabolites from LC-MS. Using principal components analysis, a major effect of temperature was observed in each species which was larger than that resulting from the genetic background. Compounds mostly affected by temperature treatment were subsequently selected using partial least squares discriminant analysis and were further identified. These putative annotations indicated that soluble sugars and several polyphenols, including tannins, triterpenes and alkaloids were mostly influenced.


Assuntos
Eucalyptus/metabolismo , Metabolômica , Temperatura , Clorofila/metabolismo , Cromatografia Líquida , Análise Discriminante , Eucalyptus/genética , Cromatografia Gasosa-Espectrometria de Massas , Genótipo , Análise dos Mínimos Quadrados , Metaboloma , Anotação de Sequência Molecular , Análise Multivariada , Análise de Componente Principal , Especificidade da Espécie , Açúcares/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-27525023

RESUMO

The chemical composition and biological activity of a sample of yellow propolis from Mato Grosso do Sul, Brazil (EEP-Y MS), were investigated for the first time and compared with green, brown, and red types of Brazilian propolis and with a sample of yellow propolis from Cuba. Overall, EEP-Y MS had different qualitative chemical profiles, as well as different cytotoxic and antimicrobial activities when compared to the other types of propolis assessed in this study and it is a different chemotype of Brazilian propolis. Absence of phenolic compounds and the presence of mixtures of aliphatic compounds in yellow propolis were determined by analysing (1)H-NMR spectra and fifteen terpenes were identified by GC-MS. EEP-Y MS showed cytotoxic activity against human tumour strain OVCAR-8 but was not active against Gram-negative or Gram-positive bacteria. Our results confirm the difficulty of establishing a uniform quality standard for propolis from diverse geographical origins. The most appropriate pharmacological applications of yellow types of propolis must be further investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA