Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 40(35): 5160-5169, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35902279

RESUMO

Next generation vaccines have the capability to contribute to and revolutionise the veterinary vaccine industry. African horse sickness (AHS) is caused by an arbovirus infection and is characterised by respiratory distress and/or cardiovascular failure and is lethal to horses. Mandatory annual vaccination in endemic areas curtails disease occurrence and severity. However, development of a next generation AHSV vaccine, which is both safe and efficacious, has been an objective globally for years. In this study, both AHSV serotype 5 chimaeric virus-like particles (VLPs) and soluble viral protein 2 (VP2) were successfully produced in Nicotiana benthamiana ΔXT/FT plants, partially purified and validated by gel electrophoresis, transmission electron microscopy and liquid chromatography-mass spectrometry (LC-MS/MS) based peptide sequencing before vaccine formulation. IFNAR-/- mice vaccinated with the adjuvanted VLPs or VP2 antigens in a 10 µg prime-boost regime resulted in high titres of antibodies confirmed by both serum neutralising tests (SNTs) and enzyme-linked immunosorbent assays (ELISA). Although previous studies reported high titres of antibodies in horses when vaccinated with plant-produced AHS homogenous VLPs, this is the first study demonstrating the protective efficacy of both AHSV serotype 5 chimaeric VLPs and soluble AHSV-5 VP2 as vaccine candidates. Complementary to this, coating ELISA plates with the soluble VP2 has the potential to underpin serotype-specific serological assays.


Assuntos
Vírus da Doença Equina Africana , Doença Equina Africana , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Proteínas do Capsídeo , Cromatografia Líquida , Cavalos , Camundongos , Sorogrupo , Espectrometria de Massas em Tandem , Proteínas Virais
2.
BMC Vet Res ; 15(1): 432, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796116

RESUMO

BACKGROUND: African horse sickness (AHS) is a severe arthropod-borne viral disease of equids, with a mortality rate of up to 95% in susceptible naïve horses. Due to safety concerns with the current live, attenuated AHS vaccine, alternate safe and effective vaccination strategies such as virus-like particles (VLPs) are being investigated. Transient plant-based expression systems are a rapid and highly scalable means of producing such African horse sickness virus (AHSV) VLPs for vaccine purposes. RESULTS: In this study, we demonstrated that transient co-expression of the four AHSV capsid proteins in agroinfiltrated Nicotiana benthamiana dXT/FT plants not only allowed for the assembly of homogenous AHSV-1 VLPs but also single, double and triple chimeric VLPs, where one capsid protein originated from one AHS serotype and at least one other capsid protein originated from another AHS serotype. Following optimisation of a large scale VLP purification procedure, the safety and immunogenicity of the plant-produced, triple chimeric AHSV-6 VLPs was confirmed in horses, the target species. CONCLUSIONS: We have successfully shown assembly of single and double chimeric AHSV-7 VLPs, as well as triple chimeric AHSV-6 VLPs, in Nicotiana benthamiana dXT/FT plants. Plant produced chimeric AHSV-6 VLPs were found to be safe for administration into 6 month old foals as well as capable of eliciting a weak neutralizing humoral immune response in these target animals against homologous AHSV virus.


Assuntos
Vírus da Doença Equina Africana/imunologia , Doença Equina Africana/prevenção & controle , Proteínas do Capsídeo/imunologia , Nicotiana/metabolismo , Vacinas Virais , Animais , Anticorpos Neutralizantes/imunologia , Proteínas do Capsídeo/metabolismo , Regulação da Expressão Gênica de Plantas , Cavalos , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão , Proteínas Recombinantes , Vacinas Atenuadas , Vacinas de Partículas Semelhantes a Vírus
3.
Vaccine ; 37(41): 6068-6075, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31471154

RESUMO

Bluetongue (BT) is a hemorrhagic non-contagious, biting midge-transmitted disease of wild and domestic ruminants that is caused by bluetongue virus (BTV). Annual vaccination plays a pivotal role in BT disease control in endemic regions. Due to safety concerns of the current BTV multivalent live attenuated vaccine (LAV), a safe efficacious new generation subunit vaccine such as a plant-produced BT virus-like particle (VLP) vaccine is imperative. Previously, homogenous BTV serotype 8 (BTV-8) VLPs were successfully produced in Nicotiana benthamiana plants and provided protective immunity in sheep. In this study, combinations of BTV capsid proteins from more than one serotype were expressed and assembled to form chimaeric BTV-3 and BTV-4 VLPs in N. benthamiana plants. The assembled homogenous BTV-8, as well as chimaeric BTV-3 and chimaeric BTV-4 VLP serotypes, were confirmed by SDS-PAGE, Transmission Electron microscopy (TEM) and protein confirmation using liquid chromatography-mass spectrometry (LC-MS/MS) based peptide sequencing. As VP2 is the major determinant eliciting protective immunity, the percentage coverage and number of unique VP2 peptides detected in assembled chimaeric BT VLPs were used as a guide to assemble the most appropriate chimaeric combinations. Both plant-produced chimaeric BTV-3 and BTV-4 VLPs were able to induce long-lasting serotype-specific neutralizing antibodies equivalent to the monovalent LAV controls. Antibody levels remained high to the end of the trial. Combinations of homogenous and chimaeric BT VLPs have great potential as a safe, effective multivalent vaccine with the ability to distinguish between vaccinated and infected individuals (DIVA) due to the absence of non-structural proteins.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vírus Bluetongue/imunologia , Bluetongue/prevenção & controle , Ovinos/imunologia , Vacinação/veterinária , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Nicotiana/virologia , Vacinas Atenuadas/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA