RESUMO
BACKGROUND: The genetic architecture underlying Familial Hypercholesterolemia (FH) in Middle Eastern Arabs is yet to be fully described, and approaches to assess this from population-wide biobanks are important for public health planning and personalized medicine. METHODS: We evaluate the pilot phase cohort (n = 6,140 adults) of the Qatar Biobank (QBB) for FH using the Dutch Lipid Clinic Network (DLCN) criteria, followed by an in-depth characterization of all genetic alleles in known dominant (LDLR, APOB, and PCSK9) and recessive (LDLRAP1, ABCG5, ABCG8, and LIPA) FH-causing genes derived from whole-genome sequencing (WGS). We also investigate the utility of a globally established 12-SNP polygenic risk score to predict FH individuals in this cohort with Arab ancestry. RESULTS: Using DLCN criteria, we identify eight (0.1%) 'definite', 41 (0.7%) 'probable' and 334 (5.4%) 'possible' FH individuals, estimating a prevalence of 'definite or probable' FH in the Qatari cohort of ~ 1:125. We identify ten previously known pathogenic single-nucleotide variants (SNVs) and 14 putatively novel SNVs, as well as one novel copy number variant in PCSK9. Further, despite the modest sample size, we identify one homozygote for a known pathogenic variant (ABCG8, p. Gly574Arg, global MAF = 4.49E-05) associated with Sitosterolemia 2. Finally, calculation of polygenic risk scores found that individuals with 'definite or probable' FH have a significantly higher LDL-C SNP score than 'unlikely' individuals (p = 0.0003), demonstrating its utility in Arab populations. CONCLUSION: We design and implement a standardized approach to phenotyping a population biobank for FH risk followed by systematically identifying known variants and assessing putative novel variants contributing to FH burden in Qatar. Our results motivate similar studies in population-level biobanks - especially those with globally under-represented ancestries - and highlight the importance of genetic screening programs for early detection and management of individuals with high FH risk in health systems.
Assuntos
Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9 , Adulto , Humanos , Pró-Proteína Convertase 9/genética , Bancos de Espécimes Biológicos , LDL-Colesterol , Fenótipo , Hiperlipoproteinemia Tipo II/complicações , Receptores de LDL , MutaçãoRESUMO
BACKGROUND: Disparities in the genetic risk of cancer among various ancestry groups and populations remain poorly defined. This challenge is even more acute for Middle Eastern populations, where the paucity of genomic data could affect the clinical potential of cancer genetic risk profiling. We used data from the phase 1 cohort of the Qatar Genome Programme to investigate genetic variation in cancer-susceptibility genes in the Qatari population. METHODS: The Qatar Genome Programme generated high-coverage genome sequencing on DNA samples collected from 6142 native Qataris, stratified into six distinct ancestry groups: general Arab, Persian, Arabian Peninsula, Admixture Arab, African, and South Asian. In this population-based, cohort study, we evaluated the performance of polygenic risk scores for the most common cancers in Qatar (breast, prostate, and colorectal cancers). Polygenic risk scores were trained in The Cancer Genome Atlas (TCGA) dataset, and their distributions were subsequently applied to the six different genetic ancestry groups of the Qatari population. Rare deleterious variants within 1218 cancer susceptibility genes were analysed, and their clinical pathogenicity was assessed by ClinVar and the CharGer computational tools. FINDINGS: The cohort included in this study was recruited by the Qatar Biobank between Dec 11, 2012, and June 9, 2016. The initial dataset comprised 6218 cohort participants, and whole genome sequencing quality control filtering led to a final dataset of 6142 samples. Polygenic risk score analyses of the most common cancers in Qatar showed significant differences between the six ancestry groups (p<0·0001). Qataris with Arabian Peninsula ancestry showed the lowest polygenic risk score mean for colorectal cancer (-0·41), and those of African ancestry showed the highest average for prostate cancer (0·85). Cancer-gene rare variant analysis identified 76 Qataris (1·2% of 6142 individuals in the Qatar Genome Programme cohort) carrying ClinVar pathogenic or likely pathogenic variants in clinically actionable cancer genes. Variant analysis using CharGer identified 195 individuals carriers (3·17% of the cohort). Breast cancer pathogenic variants were over-represented in Qataris of Persian origin (22 [56·4%] of 39 BRCA1/BRCA2 variant carriers) and completely absent in those of Arabian Peninsula origin. INTERPRETATION: We observed a high degree of heterogeneity for cancer predisposition genes and polygenic risk scores across ancestries in this population from Qatar. Stratification systems could be considered for the implementation of national cancer preventive medicine programmes. FUNDING: Qatar Foundation.
Assuntos
Predisposição Genética para Doença , Neoplasias , Estudos de Coortes , Humanos , Masculino , Neoplasias/epidemiologia , Neoplasias/genética , Oncogenes , Catar/epidemiologiaRESUMO
Understanding the contribution of the host's genetic background to cancer immunity may lead to improved stratification for immunotherapy and to the identification of novel therapeutic targets. We investigated the effect of common and rare germline variants on 139 well-defined immune traits in â¼9000 cancer patients enrolled in TCGA. High heritability was observed for estimates of NK cell and T cell subset infiltration and for interferon signaling. Common variants of IFIH1, TMEM173 (STING1), and TMEM108 were associated with differential interferon signaling and variants mapping to RBL1 correlated with T cell subset abundance. Pathogenic or likely pathogenic variants in BRCA1 and in genes involved in telomere stabilization and Wnt-ß-catenin also acted as immune modulators. Our findings provide evidence for the impact of germline genetics on the composition and functional orientation of the tumor immune microenvironment. The curated datasets, variants, and genes identified provide a resource toward further understanding of tumor-immune interactions.
Assuntos
Mutação em Linhagem Germinativa/genética , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/imunologia , Linfócitos T/imunologia , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Genes BRCA1 , Estudo de Associação Genômica Ampla , Humanos , Interferons/metabolismo , Masculino , Pessoa de Meia-Idade , Neoplasias/genética , Característica Quantitativa Herdável , Proteína p107 Retinoblastoma-Like/genética , Transdução de Sinais/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismoRESUMO
BACKGROUND: Monoallelic expression (MAE) is a frequent genomic phenomenon in normal tissues, however its role in cancer is yet to be fully understood. MAE is defined as the expression of a gene that is restricted to one allele in the presence of a diploid heterozygous genome. Constitutive MAE occurs for imprinted genes, odorant receptors and random X inactivation. Several studies in normal tissues have showed MAE in approximately 5-20% of the cases. However, little information exists on the MAE rate in cancer. In this study we assessed the presence and rate of MAE in melanoma. The genetic basis of melanoma has been studied in depth over the past decades, leading to the identification of mutations/genetic alterations responsible for melanoma development. METHODS: To examine the role of MAE in melanoma we used 15 melanoma cell lines and compared their RNA-seq data with genotyping data obtained by the parental TIL (tumor infiltrating lymphocytes). Genotyping was performed using the Illumina HumanOmni1 beadchip. The RNA-seq library preparation and sequencing was performed using the Illumina TruSeq Stranded Total RNA Human Kit and subsequently sequenced using a HiSeq 2500 according to manufacturer's guidelines. By comparing genotyping data with RNA-seq data, we identified SNPs in which DNA genotypes were heterozygous and corresponding RNA genotypes were homozygous. All homozygous DNA genotypes were removed prior to the analysis. To confirm the validity to detect MAE, we examined heterozygous DNA genotypes from X chromosome of female samples as well as for imprinted and olfactory receptor genes and confirmed MAE. RESULTS: MAE was detected in all 15 cell lines although to a different rate. When looking at the B-allele frequencies we found a preferential pattern of complete monoallelic expression rather then differential monoallelic expression across the 15 melanoma cell lines. As some samples showed high differences in the homozygous and heterozygous call rate, we looked at the single chromosomes and showed that MAE may be explained by underlying large copy number imbalances in some instances. Interestingly these regions included genes known to play a role in melanoma initiation and progression. Nevertheless, some chromosome regions showed MAE without CN imbalances suggesting that additional mechanisms (including epigenetic silencing) may explain MAE in melanoma. CONCLUSION: The biological implications of MAE are yet to be realized. Nevertheless, our findings suggest that MAE is a common phenomenon in melanoma cell lines. Further analyses are currently being undertaken to evaluate whether MAE is gene/pathway specific and to understand whether MAE can be employed by cancers to achieve a more aggressive phenotype.
Assuntos
Impressão Genômica/fisiologia , Melanoma/genética , Neoplasias Cutâneas/genética , Alelos , Linhagem Celular Tumoral , Hibridização Genômica Comparativa , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Frequência do Gene , Genótipo , Heterozigoto , Homozigoto , Humanos , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Melanoma/patologia , Análise em Microsséries , Polimorfismo de Nucleotídeo Único , Neoplasias Cutâneas/patologiaRESUMO
Triple-negative breast cancer (TNBC) accounts for ~15-20% of breast cancer (BC) and has a higher rate of early relapse and mortality compared to other subtypes. The Chemokine (C-C motif) ligand 5 (CCL5) and its signaling pathway have been linked to TNBC. We aimed to investigate the susceptibility and prognostic implications of genetic variation in CCL5 signaling genes in TNBC in the present study. We characterized variants in CCL5 and that of six other CCL5 signaling genes (CCND1, ZMIZ1, CASP8, NOTCH2, MAP3K21, and HS6ST3) among 1,082 unrelated Tunisian subjects (544 BC patients, including 196 TNBC, and 538 healthy controls), assessed the association of the variants with BC-specific overall survival (OVS) and progression-free survival (PFS), and correlated CCL5 mRNA and serum levels with CCL5 genotypes. We found a highly significant association between the CCND1 rs614367-TT genotype (OR = 5.14; P = 0.004) and TNBC risk, and identified a significant association between the rs614367-T allele and decreased PFS in TNBC. A decreased risk of lymph node metastasis was associated with the MAP3K21 rs1294255-C allele, particularly in rs1294255-GC (OR = 0.47; P = 0.001). CCL5 variants (rs2107538 and rs2280789) were linked to CCL5 serum and mRNA levels. In the TCGA TNBC/Basal-like cohort the MAP3K21 rs1294255-G allele was associated with a decreased OVS. High expression of CCL5 in breast tumors was significantly associated with an increased OVS in all BC patients, but particularly in TNBC/Basal-like patients. In conclusion, genetic variation in CCL5 signaling genes may predict not only TNBC risk but also disease aggressiveness.
RESUMO
We performed an extensive immunogenomic analysis of more than 10,000 tumors comprising 33 diverse cancer types by utilizing data compiled by TCGA. Across cancer types, we identified six immune subtypes-wound healing, IFN-γ dominant, inflammatory, lymphocyte depleted, immunologically quiet, and TGF-ß dominant-characterized by differences in macrophage or lymphocyte signatures, Th1:Th2 cell ratio, extent of intratumoral heterogeneity, aneuploidy, extent of neoantigen load, overall cell proliferation, expression of immunomodulatory genes, and prognosis. Specific driver mutations correlated with lower (CTNNB1, NRAS, or IDH1) or higher (BRAF, TP53, or CASP8) leukocyte levels across all cancers. Multiple control modalities of the intracellular and extracellular networks (transcription, microRNAs, copy number, and epigenetic processes) were involved in tumor-immune cell interactions, both across and within immune subtypes. Our immunogenomics pipeline to characterize these heterogeneous tumors and the resulting data are intended to serve as a resource for future targeted studies to further advance the field.
Assuntos
Genômica/métodos , Neoplasias , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Humanos , Interferon gama/genética , Interferon gama/imunologia , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Neoplasias/classificação , Neoplasias/genética , Neoplasias/imunologia , Prognóstico , Equilíbrio Th1-Th2/fisiologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia , Cicatrização/genética , Cicatrização/imunologia , Adulto JovemRESUMO
Cancer immunotherapy is revolutionizing the clinical management of several tumors, but has demonstrated limited activity in breast cancer. The development of more effective treatments is hindered by incomplete knowledge of the genetic determinant of immune responsiveness. To fill this gap, we mined copy number alteration, somatic mutation, and expression data from The Cancer Genome Atlas (TCGA). By using RNA-sequencing data from 1,004 breast cancers, we defined distinct immune phenotypes characterized by progressive expression of transcripts previously associated with immune-mediated rejection. The T helper 1 (Th-1) phenotype (ICR4), which also displays upregulation of immune-regulatory transcripts such as PDL1, PD1, FOXP3, IDO1, and CTLA4, was associated with prolonged patients' survival. We validated these findings in an independent meta-cohort of 1,954 breast cancer gene expression data. Chromosome segment 4q21, which includes genes encoding for the Th-1 chemokines CXCL9-11, was significantly amplified only in the immune favorable phenotype (ICR4). The mutation and neoantigen load progressively decreased from ICR4 to ICR1 but could not fully explain immune phenotypic differences. Mutations of TP53 were enriched in the immune favorable phenotype (ICR4). Conversely, the presence of MAP3K1 and MAP2K4 mutations were tightly associated with an immune-unfavorable phenotype (ICR1). Using both the TCGA and the validation dataset, the degree of MAPK deregulation segregates breast tumors according to their immune disposition. These findings suggest that mutation-driven perturbations of MAPK pathways are linked to the negative regulation of intratumoral immune response in breast cancer. Modulations of MAPK pathways could be experimentally tested to enhance breast cancer immune sensitivity.
RESUMO
Genome-wide association studies (GWAS) have identified thousands of novel genetic associations for complex genetic disorders, leading to the identification of potential pharmacological targets for novel drug development. In schizophrenia, 108 conservatively defined loci that meet genome-wide significance have been identified and hundreds of additional sub-threshold associations harbour information on the genetic aetiology of the disorder. In the present study, we used gene-set analysis based on the known binding targets of chemical compounds to identify the 'drug pathways' most strongly associated with schizophrenia-associated genes, with the aim of identifying potential drug repositioning opportunities and clues for novel treatment paradigms, especially in multi-target drug development. We compiled 9389 gene sets (2496 with unique gene content) and interrogated gene-based p-values from the PGC2-SCZ analysis. Although no single drug exceeded experiment wide significance (corrected p<0.05), highly ranked gene-sets reaching suggestive significance including the dopamine receptor antagonists metoclopramide and trifluoperazine and the tyrosine kinase inhibitor neratinib. This is a proof of principle analysis showing the potential utility of GWAS data of schizophrenia for the direct identification of candidate drugs and molecules that show polypharmacy.
Assuntos
Antipsicóticos/farmacologia , Desenho de Fármacos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Esquizofrenia/genética , Reposicionamento de Medicamentos/métodos , Humanos , Metoclopramida/farmacologia , Quinolinas/farmacologia , Esquizofrenia/tratamento farmacológico , Trifluoperazina/farmacologiaRESUMO
OBJECTIVE: The uptake carrier organic anion-transporting polypeptide 1B3 (OATP1B3, gene SLCO1B3) is involved in the hepatic clearance of xenobiotics including statins, taxanes, and mycophenolic acid. We thought to assess the SLCO1B3 coding region for yet unidentified polymorphisms and to analyze their functional relevance. METHODS: We used DNA of ethnically diverse individuals for polymerase chain reaction, and determined polymorphisms by sequencing or temperature-dependent capillary electrophoresis. We then created variant OATP1B3 expression plasmids by site-directed mutagenesis, which were transiently expressed and functionally characterized in human cervical carcinoma (HeLa) cells using radiolabeled substrates. RESULTS: We identified six nonsynonymous polymorphisms including novel variants such as 439A>G (Thr147Ala), 767G>C (Gly256Ala), 1559A>C (His520Pro), and 1679T>C (Val560Ala). Allelic frequencies occurred to be ethnicity-dependent, with the latter observed only in African-Americans (3.6%). After expression in HeLa cells, His520Pro, Val560Ala, and Met233Ile or Met233Ile_Ser112Ala haplotype variants showed decreased uptake activity compared with wild type for cholecystokinin-8 and rosuvastatin, but not for atorvastatin. Kinetic cholecystokinin-8 analysis showed reduced Vmax without altering Km. His520Pro and Val560Ala exhibited decreased total and plasma membrane protein expressions. Val560 mapped onto a structural model of OATP1B3 showed that this is a key region for substrate-transporter interaction. His520 resides in a predicted extracellular region thought to be critical to the pH-dependent component of OATP1B3 activity. Loss of activity at pH 7.4 and 8.0 relative to pH 6.5 was significantly greater for the Pro520 variant. CONCLUSION: OATP1B3 polymorphisms that result in altered expression, substrate specificity, and pH-dependent activity may be of potential relevance to hepatic clearance of substrate drugs in vivo.
Assuntos
Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Atorvastatina , Fluorbenzenos/metabolismo , Expressão Gênica , Células HeLa , Ácidos Heptanoicos/metabolismo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Fígado/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Transportadores de Ânions Orgânicos Sódio-Independentes/química , Polimorfismo Genético , Conformação Proteica , Pirimidinas/metabolismo , Pirróis/metabolismo , Rosuvastatina Cálcica , Sincalida/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto , Relação Estrutura-Atividade , Especificidade por Substrato/genética , Sulfonamidas/metabolismoRESUMO
Organic anion-transporting polypeptides (human, OATPs; other animals, Oatps; gene symbol, SLCO/Slco) form a transport protein superfamily that mediates the translocation of amphipathic substrates across the plasma membrane of animal cells. So far, OATPs/Oatps have been identified in human, rat and mouse tissues. In this study, we used bioinformatic tools to detect new members of the OATP/SLCO superfamily in nonmammalian species and to build models for the three-dimensional structure of OATPs/Oatps. New OATP/SLCO superfamily members, some of which form distinct novel families, were identified in chicken, zebrafish, frog, fruit fly and worm species. The lack of OATP/SLCO superfamily members in plants, yeast and bacteria suggests the emergence of an ancient Oatp protein in an early ancestor of the animal kingdom. Structural models were generated for the representative members OATP1B3 and OATP2B1 based on the known structures of the major facilitator superfamily of transport proteins. A model was also built for the large extracellular region between transmembrane helices 9 and 10, following the identification of a novel homology with the Kazal-type serine protease inhibitors. Along with the electrostatic potential and the conservation of key amino acid residues, we propose a common transport mechanism for all OATPs/Oatps, whereby substrates are translocated through a central, positively charged pore in a rocker-switch type of mechanism. Several amino acid residues were identified that may play crucial roles in the proposed transport mechanism.