Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Transl Med ; 21(1): 546, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587475

RESUMO

BACKGROUND: ABCA4, the gene implicated in Stargardt disease (STGD1), contains 50 exons, of which 17 contain multiples of three nucleotides. The impact of in-frame exon skipping is yet to be determined. Antisense oligonucleotides (AONs) have been investigated in Usher syndrome-associated genes to induce skipping of in-frame exons carrying severe variants and mitigate their disease-linked effect. Upon the identification of a STGD1 proband carrying a novel exon 17 canonical splice site variant, the activity of ABCA4 lacking 22 amino acids encoded by exon 17 was examined, followed by design of AONs able to induce exon 17 skipping. METHODS: A STGD1 proband was compound heterozygous for the splice variant c.2653+1G>A, that was predicted to result in in-frame skipping of exon 17, and a null variant [c.735T>G, p.(Tyr245*)]. Clinical characteristics of this proband were studied using multi-modal imaging and complete ophthalmological examination. The aberrant splicing of c.2653+1G>A was investigated in vitro in HEK293T cells with wild-type and mutant midigenes. The residual activity of the mutant ABCA4 protein lacking Asp864-Gly885 encoded by exon 17 was analyzed with all-trans-retinal-activated ATPase activity assay, along with its subcellular localization. To induce exon 17 skipping, the effect of 40 AONs was examined in vitro in WT WERI-Rb-1 cells and 3D human retinal organoids. RESULTS: Late onset STGD1 in the proband suggests that c.2653+1G>A does not have a fully deleterious effect. The in vitro splice assay confirmed that this variant leads to ABCA4 transcripts without exon 17. ABCA4 Asp864_Gly863del was stable and retained 58% all-trans-retinal-activated ATPase activity compared to WT ABCA4. This sequence is located in an unstructured linker region between transmembrane domain 6 and nucleotide-binding domain-1 of ABCA4. AONs were designed to possibly reduce pathogenicity of severe variants harbored in exon 17. The best AON achieved 59% of exon 17 skipping in retinal organoids. CONCLUSIONS: Exon 17 deletion in ABCA4 does not result in the absence of protein activity and does not cause a severe STGD1 phenotype when in trans with a null allele. By applying AONs, the effect of severe variants in exon 17 can potentially be ameliorated by exon skipping, thus generating partial ABCA4 activity in STGD1 patients.


Assuntos
Adenosina Trifosfatases , Retinaldeído , Humanos , Doença de Stargardt/genética , Células HEK293 , Éxons/genética , Proteínas Mutantes , Transportadores de Cassetes de Ligação de ATP/genética
2.
Prog Retin Eye Res ; 89: 101036, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34954332

RESUMO

ABCA4 is a member of the superfamily of ATP-binding cassette (ABC) transporters that is preferentially localized along the rim region of rod and cone photoreceptor outer segment disc membranes. It uses the energy from ATP binding and hydrolysis to transport N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the Schiff base adduct of retinal and phosphatidylethanolamine, from the lumen to the cytoplasmic leaflet of disc membranes. This ensures that all-trans-retinal and excess 11-cis-retinal are efficiently cleared from photoreceptor cells thereby preventing the accumulation of toxic retinoid compounds. Loss-of-function mutations in the gene encoding ABCA4 cause autosomal recessive Stargardt macular degeneration, also known as Stargardt disease (STGD1), and related autosomal recessive retinopathies characterized by impaired central vision and an accumulation of lipofuscin and bis-retinoid compounds. High resolution structures of ABCA4 in its substrate and nucleotide free state and containing bound N-Ret-PE or ATP have been determined by cryo-electron microscopy providing insight into the molecular architecture of ABCA4 and mechanisms underlying substrate recognition and conformational changes induced by ATP binding. The expression and functional characterization of a large number of disease-causing missense ABCA4 variants have been determined. These studies have shed light into the molecular mechanisms underlying Stargardt disease and a classification that reliably predicts the effect of a specific missense mutation on the severity of the disease. They also provide a framework for developing rational therapeutic treatments for ABCA4-associated diseases.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Retinoides , Doença de Stargardt , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Humanos , Mutação , Retinoides/metabolismo , Doença de Stargardt/genética
3.
Nat Med ; 26(4): 577-588, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32094924

RESUMO

Transmembrane protein 30A (TMEM30A) maintains the asymmetric distribution of phosphatidylserine, an integral component of the cell membrane and 'eat-me' signal recognized by macrophages. Integrative genomic and transcriptomic analysis of diffuse large B-cell lymphoma (DLBCL) from the British Columbia population-based registry uncovered recurrent biallelic TMEM30A loss-of-function mutations, which were associated with a favorable outcome and uniquely observed in DLBCL. Using TMEM30A-knockout systems, increased accumulation of chemotherapy drugs was observed in TMEM30A-knockout cell lines and TMEM30A-mutated primary cells, explaining the improved treatment outcome. Furthermore, we found increased tumor-associated macrophages and an enhanced effect of anti-CD47 blockade limiting tumor growth in TMEM30A-knockout models. By contrast, we show that TMEM30A loss-of-function increases B-cell signaling following antigen stimulation-a mechanism conferring selective advantage during B-cell lymphoma development. Our data highlight a multifaceted role for TMEM30A in B-cell lymphomagenesis, and characterize intrinsic and extrinsic vulnerabilities of cancer cells that can be therapeutically exploited.


Assuntos
Transformação Celular Neoplásica/genética , Mutação com Perda de Função , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/terapia , Proteínas de Membrana/genética , Terapia de Alvo Molecular , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Colúmbia Britânica/epidemiologia , Células Cultivadas , Estudos de Coortes , Feminino , Predisposição Genética para Doença , Células HEK293 , Humanos , Células Jurkat , Mutação com Perda de Função/genética , Linfoma Difuso de Grandes Células B/epidemiologia , Linfoma Difuso de Grandes Células B/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Pessoa de Meia-Idade , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Adulto Jovem
4.
Hum Gene Ther ; 30(11): 1361-1370, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31418294

RESUMO

Autosomal recessive Stargardt disease is the most common inherited macular degeneration in humans. It is caused by mutations in the retina-specific ATP binding cassette transporter A4 (ABCA4) that is essential for the clearance of all-trans-retinal from photoreceptor cells. Loss of this function results in the accumulation of toxic bisretinoids in the outer segment disk membranes and their subsequent transfer into adjacent retinal pigment epithelium (RPE) cells. This ultimately leads to the Stargardt disease phenotype of increased retinal autofluorescence and progressive RPE and photoreceptor cell loss. Adeno-associated virus (AAV) vectors have been widely used in gene therapeutic applications, but their limited cDNA packaging capacity of ∼4.5 kb has impeded their use for transgenes exceeding this limit. AAV dual vectors were developed to overcome this size restriction. In this study, we have evaluated the in vitro expression of ABCA4 using three options: overlap, transplicing, and hybrid ABCA4 dual vector systems. The hybrid system was the most efficient of these dual vector alternatives and used to express the full-length ABCA4 in Abca4-/- mice. The full-length ABCA4 protein correctly localized to photoreceptor outer segments. Moreover, treatment of Abca4-/- mice with this ABCA4 hybrid dual vector system resulted in a reduced accumulation of the lipofuscin/N-retinylidene-N-retinylethanolamine (A2E) autofluorescence in vivo, and retinal A2E quantification supported these findings. These results show that the hybrid AAV dual vector option is both safe and therapeutic in mice, and the delivered ABCA4 transgene is functional and has a significant effect on reducing A2E accumulation in the Abca4-/- mouse model of Stargardt disease.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/uso terapêutico , Dependovirus/genética , Genes Recessivos , Vetores Genéticos/metabolismo , Retina/patologia , Doença de Stargardt/genética , Doença de Stargardt/terapia , Animais , Modelos Animais de Doenças , Fluorescência , Fundo de Olho , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Retina/metabolismo , Retinoides/metabolismo
5.
J Biol Chem ; 294(17): 6809-6821, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850395

RESUMO

ATP-dependent phospholipid flippase activity crucial for generating lipid asymmetry was first detected in red blood cell (RBC) membranes, but the P4-ATPases responsible have not been directly determined. Using affinity-based MS, we show that ATP11C is the only abundant P4-ATPase phospholipid flippase in human RBCs, whereas ATP11C and ATP8A1 are the major P4-ATPases in mouse RBCs. We also found that ATP11A and ATP11B are present at low levels. Mutations in the gene encoding ATP11C are responsible for blood and liver disorders, but the disease mechanisms are not known. Using heterologous expression, we show that the T415N substitution in the phosphorylation motif of ATP11C, responsible for congenital hemolytic anemia, reduces ATP11C expression, increases retention in the endoplasmic reticulum, and decreases ATPase activity by 61% relative to WT ATP11C. The I355K substitution in the transmembrane domain associated with cholestasis and anemia in mice was expressed at WT levels and trafficked to the plasma membrane but was devoid of activity. We conclude that the T415N variant causes significant protein misfolding, resulting in low protein expression, cellular mislocalization, and reduced functional activity. In contrast, the I355K variant folds and traffics normally but lacks key contacts required for activity. We propose that the loss in ATP11C phospholipid flippase activity coupled with phospholipid scramblase activity results in the exposure of phosphatidylserine on the surface of RBCs, decreasing RBC survival and resulting in anemia.


Assuntos
Adenosina Trifosfatases/metabolismo , Eritrócitos/enzimologia , Fosfolipídeos/metabolismo , Adenosina Trifosfatases/genética , Animais , Membrana Eritrocítica/enzimologia , Membrana Eritrocítica/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosforilação , Dobramento de Proteína
6.
Sci Rep ; 8(1): 10795, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018401

RESUMO

P4-ATPases are a subfamily of P-type ATPases that flip phospholipids across membranes to generate lipid asymmetry, a property vital to many cellular processes. Mutations in several P4-ATPases have been linked to severe neurodegenerative and metabolic disorders. Most P4-ATPases associate with one of three accessory subunit isoforms known as CDC50A (TMEM30A), CDC50B (TMEM30B), and CDC50C (TMEM30C). To identify P4-ATPases that associate with CDC50A, in vivo, and determine their tissue distribution, we isolated P4-ATPases-CDC50A complexes from retina, brain, liver, testes, and kidney on a CDC50A immunoaffinity column and identified and quantified P4-ATPases from their tryptic peptides by mass spectrometry. Of the 12 P4-ATPase that associate with CDC50 subunits, 10 P4-ATPases were detected. Four P4-ATPases (ATP8A1, ATP11A, ATP11B, ATP11C) were present in all five tissues. ATP10D was found in low amounts in liver, brain, testes, and kidney, and ATP8A2 was present in significant amounts in retina, brain, and testes. ATP8B1 was detected only in liver, ATP8B3 and ATP10A only in testes, and ATP8B2 primarily in brain. We also show that ATP11A, ATP11B and ATP11C, like ATP8A1 and ATP8A2, selectively flip phosphatidylserine and phosphatidylethanolamine across membranes. These studies provide new insight into the tissue distribution, relative abundance, subunit interactions and substrate specificity of P4-ATPase-CDC50A complexes.


Assuntos
ATPases do Tipo-P/fisiologia , Proteínas de Transferência de Fosfolipídeos/fisiologia , Animais , Encéfalo/metabolismo , Rim/metabolismo , Fígado/metabolismo , Masculino , Espectrometria de Massas , Camundongos , ATPases do Tipo-P/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteômica , Retina/metabolismo , Testículo/metabolismo
7.
Orphanet J Rare Dis ; 13(1): 86, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-30012219

RESUMO

BACKGROUND: ATP8A2 mutations have recently been described in several patients with severe, early-onset hypotonia and cognitive impairment. The aim of our study was to characterize the clinical phenotype of patients with ATP8A2 mutations. METHODS: An observational study was conducted at multiple diagnostic centres. Clinical data is presented from 9 unreported and 2 previously reported patients with ATP8A2 mutations. We compare their features with 3 additional patients that have been previously reported in the medical literature. RESULTS: Eleven patients with biallelic ATP8A2 mutations were identified, with a mean age of 9.4 years (range 2.5-28 years). All patients with ATP8A2 mutations (100%) demonstrated developmental delay, severe hypotonia and movement disorders, specifically chorea or choreoathetosis (100%), dystonia (27%) and facial dyskinesia (18%). Optic atrophy was observed in 78% of patients for whom funduscopic examination was performed. Symptom onset in all (100%) was noted before 6 months of age, with 70% having symptoms noted at birth. Feeding difficulties were common (91%) although most patients were able to tolerate pureed or thickened feeds, and 3 patients required gastrostomy tube insertion. MRI of the brain was normal in 50% of the patients. A smaller proportion was noted to have mild cortical atrophy (30%), delayed myelination (20%) and/or hypoplastic optic nerves (20%). Functional studies were performed on differentiated induced pluripotent cells from one child, which confirmed a decrease in ATP8A2 expression compared to control cells. CONCLUSIONS: ATP8A2 gene mutations have emerged as the cause of a novel neurological phenotype characterized by global developmental delays, severe hypotonia and hyperkinetic movement disorders, the latter being an important distinguishing feature. Optic atrophy is common and may only become apparent in the first few years of life, necessitating repeat ophthalmologic evaluation in older children. Early recognition of the cardinal features of this condition will facilitate diagnosis of this complex neurologic disorder.


Assuntos
Adenosina Trifosfatases/genética , Disfunção Cognitiva/genética , Hipotonia Muscular/genética , Mutação/genética , Atrofia Óptica/genética , Proteínas de Transferência de Fosfolipídeos/genética , Encéfalo/patologia , Disfunção Cognitiva/etiologia , Humanos , Imageamento por Ressonância Magnética , Hipotonia Muscular/etiologia , Atrofia Óptica/etiologia , Sequenciamento do Exoma
8.
Proc Natl Acad Sci U S A ; 115(21): 5570-5575, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735665

RESUMO

In mammalian olfactory transduction, odorants activate a cAMP-mediated signaling pathway that leads to the opening of cyclic nucleotide-gated (CNG), nonselective cation channels and depolarization. The Ca2+ influx through open CNG channels triggers an inward current through Ca2+-activated Cl channels (ANO2), which is expected to produce signal amplification. However, a study on an Ano2-/- mouse line reported no elevation in the behavioral threshold of odorant detection compared with wild type (WT). Subsequent studies by others on the same Ano2-/- line, nonetheless, found subtle defects in olfactory behavior and some abnormal axonal projections from the olfactory receptor neurons (ORNs) to the olfactory bulb. As such, the question regarding signal amplification by the Cl current in WT mouse remains unsettled. Recently, with suction-pipette recording, we have successfully separated in frog ORNs the CNG and Cl currents during olfactory transduction and found the Cl current to predominate in the response down to the threshold of action-potential signaling to the brain. For better comparison with the mouse data by others, we have now carried out similar current-separation experiments on mouse ORNs. We found that the Cl current clearly also predominated in the mouse olfactory response at signaling threshold, accounting for ∼80% of the response. In the absence of the Cl current, we expect the threshold stimulus to increase by approximately sevenfold.


Assuntos
Anoctaminas/fisiologia , Encéfalo/fisiologia , Cálcio/farmacologia , Cloretos/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Animais , Encéfalo/citologia , AMP Cíclico/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Knockout , Neurônios Receptores Olfatórios/citologia , Neurônios Receptores Olfatórios/efeitos dos fármacos , Técnicas de Patch-Clamp , Transdução de Sinais/efeitos dos fármacos , Olfato/efeitos dos fármacos
9.
Mol Ther Methods Clin Dev ; 3: 16051, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27556059

RESUMO

Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia.

10.
Front Mol Neurosci ; 7: 44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24904271

RESUMO

Retinal degeneration 3 (RD3) is an evolutionarily conserved 23 kDa protein expressed in rod and cone photoreceptor cells. Mutations in the gene encoding RD3 resulting in unstable non-functional C-terminal truncated proteins are responsible for early onset photoreceptor degeneration in Leber Congenital Amaurosis 12 patients, the rd3 mice, and the rcd2 collies. Recent studies have shown that RD3 interacts with guanylate cyclases GC1 and GC2 in retinal cell extracts and HEK293 cells co-expressing GC and RD3. This interaction inhibits GC catalytic activity and promotes the exit of GC1 and GC2 from the endoplasmic reticulum and their trafficking to photoreceptor outer segments. Adeno-associated viral vector delivery of the normal RD3 gene to photoreceptors of the rd3 mouse restores GC1 and GC2 expression and outer segment localization and leads to the long-term recovery of visual function and photoreceptor cell survival. This review focuses on the genetic and biochemical studies that have provided insight into the role of RD3 in photoreceptor function and survival.

11.
Proc Natl Acad Sci U S A ; 111(14): E1334-43, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24706822

RESUMO

P4-ATPases (flippases) translocate specific phospholipids such as phosphatidylserine from the exoplasmic leaflet of the cell membrane to the cytosolic leaflet, upholding an essential membrane asymmetry. The mechanism of flipping this giant substrate has remained an enigma. We have investigated the importance of amino acid residues in transmembrane segment M4 of mammalian P4-ATPase ATP8A2 by mutagenesis. In the related ion pumps Na(+),K(+)-ATPase and Ca(2+)-ATPase, M4 moves during the enzyme cycle, carrying along the ion bound to a glutamate. In ATP8A2, the corresponding residue is an isoleucine, which recently was found mutated in patients with cerebellar ataxia, mental retardation, and dysequilibrium syndrome. Our analyses of the lipid substrate concentration dependence of the overall and partial reactions of the enzyme cycle in mutants indicate that, during the transport across the membrane, the phosphatidylserine head group passes near isoleucine-364 (I364) and that I364 is critical to the release of the transported lipid into the cytosolic leaflet. Another M4 residue, N359, is involved in recognition of the lipid substrate on the exoplasmic side. Our functional studies are supported by structural homology modeling and molecular dynamics simulations, suggesting that I364 and adjacent hydrophobic residues function as a hydrophobic gate that separates the entry and exit sites of the lipid and directs sequential formation and annihilation of water-filled cavities, thereby enabling transport of the hydrophilic phospholipid head group in a groove outlined by the transmembrane segments M1, M2, M4, and M6, with the hydrocarbon chains following passively, still in the membrane lipid phase.


Assuntos
Adenosina Trifosfatases/metabolismo , Isoleucina/metabolismo , Fosfolipídeos/metabolismo , Adenosina Trifosfatases/genética , Animais , Transporte Biológico , Bovinos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mutagênese , Especificidade por Substrato
12.
J Cell Sci ; 127(Pt 5): 1138-49, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24413176

RESUMO

ATP8A2 is a P4-ATPase that is highly expressed in the retina, brain, spinal cord and testes. In the retina, ATP8A2 is localized in photoreceptors where it uses ATP to transport phosphatidylserine (PS) and phosphatidylethanolamine (PE) from the exoplasmic to the cytoplasmic leaflet of membranes. Although mutations in ATP8A2 have been reported to cause mental retardation in humans and degeneration of spinal motor neurons in mice, the role of ATP8A2 in sensory systems has not been investigated. We have analyzed the retina and cochlea of ATP8A2-deficient mice to determine the role of ATP8A2 in visual and auditory systems. ATP8A2-deficient mice have shortened photoreceptor outer segments, a reduction in photoresponses and decreased photoreceptor viability. The ultrastructure and phagocytosis of the photoreceptor outer segment appeared normal, but the PS and PE compositions were altered and the rhodopsin content was decreased. The auditory brainstem response threshold was significantly higher and degeneration of spiral ganglion cells was apparent. Our studies indicate that ATP8A2 plays a crucial role in photoreceptor and spiral ganglion cell function and survival by maintaining phospholipid composition and contributing to vesicle trafficking.


Assuntos
Adenosina Trifosfatases/fisiologia , Audição , Proteínas de Transferência de Fosfolipídeos/fisiologia , Segmento Externo das Células Fotorreceptoras da Retina/fisiologia , Gânglio Espiral da Cóclea/citologia , Visão Ocular , Animais , Sobrevivência Celular , Potenciais Evocados Auditivos do Tronco Encefálico , Complexo de Golgi/enzimologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Opsinas/metabolismo , Células PC12 , Fagocitose , Fosfolipídeos/metabolismo , Transporte Proteico , Ratos , Rodopsina/metabolismo , Vesículas Transportadoras/metabolismo
13.
Hum Mol Genet ; 22(19): 3894-905, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23740938

RESUMO

RD3 is a 23 kDa protein implicated in the stable expression of guanylate cyclase in photoreceptor cells. Truncation mutations are responsible for photoreceptor degeneration and severe early-onset vision loss in Leber congenital amaurosis 12 (LCA12) patients, the rd3 mouse and the rcd2 collie. To further investigate the role of RD3 in photoreceptors and explore gene therapy as a potential treatment for LCA12, we delivered adeno-associated viral vector (AAV8) with a Y733F capsid mutation and containing the mouse Rd3 complementary DNA (cDNA) under the control of the human rhodopsin kinase promoter to photoreceptors of 14-day-old Rb(11.13)4Bnr/J and In (5)30Rk/J strains of rd3 mice by subretinal injections. Strong RD3 transgene expression led to the translocation of guanylate cyclase from the endoplasmic reticulum (ER) to rod and cone outer segments (OSs) as visualized by immunofluorescence microscopy. Guanylate cyclase expression and localization coincided with the survival of rod and cone photoreceptors for at least 7 months. Rod and cone visual function was restored in the In (5)30Rk/J strain of rd3 mice as measured by electroretinography (ERG), but only rod function was recovered in the Rb(11.13)4Bnr/J strain, suggesting that the latter may have another defect in cone phototransduction. These studies indicate that RD3 plays an essential role in the exit of guanylate cyclase from the ER and its trafficking to photoreceptor OSs and provide a 'proof of concept' for AAV-mediated gene therapy as a potential therapeutic treatment for LCA12.


Assuntos
Terapia Genética , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Guanilato Ciclase/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Animais , Dependovirus/genética , Modelos Animais de Doenças , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Vetores Genéticos , Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/genética , Humanos , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/metabolismo , Amaurose Congênita de Leber/patologia , Amaurose Congênita de Leber/terapia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Nucleares/metabolismo , Retina/metabolismo , Transgenes
14.
Proc Natl Acad Sci U S A ; 107(49): 21158-63, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21078983

RESUMO

Guanylate cyclases, GC1 and GC2, are localized in the light-sensitive outer segment compartment of photoreceptor cells, where they play a crucial role in phototransduction by catalyzing the synthesis of cGMP, the second messenger of phototransduction, and regulating intracellular Ca(2+) levels in combination with the cGMP-gated channel. Mutations in GC1 are known to cause Leber congenital amaurosis type 1 (LCA1), a childhood disease associated with severe vision loss. Although the enzymatic and regulatory properties of guanylate cyclases have been studied extensively, the molecular determinants responsible for their trafficking in photoreceptors remain unknown. Here we show that RD3, a protein of unknown function encoded by a gene associated with photoreceptor degeneration in humans with Leber congenital amaurosis type 12 (LCA12), the rd3 mouse, and rcd2 collie, colocalizes and interacts with GC1 and GC2 in rod and cone photoreceptor cells of normal mice. GC1 and GC2 are undetectable in photoreceptors of the rd3 mouse deficient in RD3 by immunofluorescence microscopy. Cell expression studies show that RD3 mediates the export of GC1 from the endoplasmic reticulum to endosomal vesicles, and that the C terminus of GC1 is required for RD3 binding. Our results indicate that photoreceptor degeneration in the rd3 mouse, rcd2 dog, and LCA12 patients is caused by impaired RD3-mediated guanylate cyclase expression and trafficking. The resulting deficiency in cGMP synthesis and the constitutive closure of cGMP-gated channels might cause a reduction in intracellular Ca(2+) to a level below that required for long-term photoreceptor cell survival.


Assuntos
Guanilato Ciclase/metabolismo , Proteínas Nucleares/fisiologia , Células Fotorreceptoras/metabolismo , Animais , Cálcio/metabolismo , GMP Cíclico/biossíntese , Cães , Humanos , Amaurose Congênita de Leber/etiologia , Camundongos , Camundongos Knockout , Transporte Proteico , Receptores de Superfície Celular/metabolismo , Degeneração Retiniana/etiologia
15.
Int J Gynecol Cancer ; 20(1): 16-22, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20130498

RESUMO

INTRODUCTION: Epithelial ovarian carcinomas are highly lethal because most are detected at late stages. A previous immunohistochemical analysis showed that oviductal glycoprotein 1 (OVGP1), a secretory product of the oviductal epithelium under estrogen dominance, is produced predominantly by borderline and low-grade malignant epithelial ovarian tumors. In the present study, we investigated OVGP1 as a possible serum marker for the detection of ovarian cancer. METHODS: We generated a highly specific monoclonal antibody, clone 7E10, to human OVGP1. Using 7E10 and a polyclonal antibody, a sandwich enzyme-linked immunosorbent assay was developed to assay OVGP1 levels in 135 normal sera, and sera from 21 benign tumors, 12 borderline tumors, and 87 ovarian cancers (18, grade 1-2 serous; 44, grade 3 serous; 10, mucinous; 10, clear cell; and 5, endometrioid). RESULTS: Using a 95% confidence interval cutoff from the mean of normal postmenopausal sera, median OVGP1 levels were elevated in the sera from 75% of the women with borderline tumors and 80% of the women with mucinous, 60% with clear cell, 59% with grade 1 and 2 serous, 22% with grade 3 serous, and 0% with endometrioid carcinomas. By stage, OVGP1 levels were highest in the sera from the borderline tumors, stage I and II serous carcinomas, and mucinous carcinomas. OVGP1 levels varied independently of cancer antigen 125 (CA125). CONCLUSIONS: Increases in OVGP1 serum levels vary with ovarian tumor histotypes and stages. Being differentiation based, OVGP1 seems to detect a different spectrum of ovarian epithelial cancers than other markers and thus should be a useful adjunct for more accurate detection, particularly of early serous ovarian cancers and mucinous carcinomas, which tend to lack increased CA125.


Assuntos
Adenocarcinoma Mucinoso/sangue , Cistadenocarcinoma Seroso/sangue , Glicoproteínas/sangue , Neoplasias Ovarianas/sangue , Adenocarcinoma Mucinoso/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Antígeno Ca-125/sangue , Antígeno Ca-125/metabolismo , Estudos de Casos e Controles , Diferenciação Celular , Cistadenocarcinoma Seroso/metabolismo , Feminino , Glicoproteínas/metabolismo , Humanos , Menopausa/sangue , Pessoa de Meia-Idade , Neoplasias Ovarianas/metabolismo , Adulto Jovem
16.
Biochemistry ; 47(35): 9098-106, 2008 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-18690710

RESUMO

RS1, also known as retinoschisin, is an extracellular discoidin domain-containing protein that has been implicated in maintaining the cellular organization and synaptic structure of the vertebrate retina. Mutations in the gene encoding RS1 are responsible for X-linked retinoschisis, a retinal degenerative disease characterized by the splitting of the retinal cell layers and visual impairment. To better understand the role of RS1 in retinal cell biology and X-linked retinoschisis, we have studied the interaction of wild-type and mutant RS1 with various carbohydrates coupled to agarose supports. RS1 bound efficiently to galactose-agarose and to a lesser extent lactose-agarose, but not agarose, N-acetylgalactosamine-agarose, N-acetylglucosamine-agarose, mannose-agarose, or heparin-agarose. RS1 cysteine mutants (C59S/C223S and C59S/C223S/C40S) which prevent disulfide-linked octamer formation exhibited little if any binding to galactose-agarose. The disease-causing R141H mutant bound galactose-agarose at levels similar to that of wild-type RS1, whereas the R141S mutant resulted in a marked reduction in the level of galactose-agarose binding. RS1 bound to galactose-agarose could be effectively displaced by incubation with isopropyl beta- d-1-thiogalactopyranoside (IPTG). This property was used as a basis to develop an efficient purification procedure. Anion exchange and galactose affinity chromatography was used to purify RS1 from the culture media of stably transformed Sf21 insect cells that express and secrete RS1. This cell expression and protein purification method should prove useful in the isolation of RS1 for detailed structure-function studies.


Assuntos
Proteínas do Olho/isolamento & purificação , Proteínas do Olho/metabolismo , Galactose/metabolismo , Lectinas/química , Proteínas de Protozoários/química , Animais , Sítios de Ligação , Células Cultivadas , Discoidinas , Proteínas do Olho/química , Humanos , Estrutura Terciária de Proteína
17.
Mol Ther ; 16(6): 1010-7, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18388913

RESUMO

Proof-of-concept for a successful adeno-associated virus serotype 5 (AAV5)-mediated gene therapy in X-linked juvenile retinoschisis (XLRS) has been demonstrated in an established mouse model for this condition. The initial studies concentrated on early time-points of treatment. In this study, we aimed to explore the consequences of single subretinal injections administered at various stages of more advanced disease. By electroretinogram (ERG), functional improvement in treated versus untreated eyes is found to be significant in retinoschisin-deficient mice injected at the time-points of 15 days (P15), 1 month (PM1), and 2 months (PM2) after birth. In mice treated at 7 months after birth (PM7), an age previously shown to exhibit advanced retinal disease, ERG responses reveal no beneficial effects of vector treatment. Generally, functional rescue is paralleled by sustained retinoschisin expression and significant photoreceptor survival relative to untreated eyes. Quantitative measures of photoreceptors and peanut agglutinin-labeled ribbon synapses demonstrate rescue effects even in mice injected as late as PM7. Taken together, AAV5-mediated gene replacement is beneficial in slowing disease progression in murine XLRS. In addition, we show the effectiveness of rescue efforts even if treatment is delayed until advanced signs of disease have developed. Human XLRS patients might benefit from these findings, which suggest that the effectiveness of treatment appears not to be restricted to the early stages of the disease, and that treatment may prove to be valuable even when administered at more advanced stages.


Assuntos
Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/fisiologia , Dependovirus/genética , Proteínas do Olho/genética , Proteínas do Olho/fisiologia , Regulação da Expressão Gênica , Terapia Genética/métodos , Retinosquise/genética , Retinosquise/terapia , Animais , Progressão da Doença , Eletrorretinografia/métodos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Tempo , Resultado do Tratamento
18.
J Biol Chem ; 282(45): 32792-801, 2007 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-17804407

RESUMO

Retinoschisin or RS1 is a discoidin domain-containing protein encoded by the gene responsible for X-linked retinoschisis (XLRS), an early onset macular degeneration characterized by a splitting of the retina. Retinoschisin, expressed and secreted from photoreceptors and bipolar cells as a homo-octameric complex, associates with the surface of these cells where it serves to maintain the cellular organization of the retina and the photoreceptor-bipolar synaptic structure. To gain insight into the role of retinoschisin in retinal cell adhesion and the pathogenesis of XLRS, we have investigated membrane components in retinal extracts that interact with retinoschisin. Unlike the discoidin domain-containing blood coagulation proteins Factor V and Factor VIII, retinoschisin did not bind to phospholipids or retinal lipids reconstituted into unilamellar vesicles or immobilized on microtiter plates. Instead, co-immunoprecipitation studies together with mass spectrometric-based proteomics and Western blotting showed that retinoschisin is associated with a complex consisting of Na/K ATPase (alpha3, beta2 isoforms) and the sterile alpha and TIR motif-containing protein SARM1. Double labeling studies for immunofluorescence microscopy confirmed the co-localization of retinoschisin with Na/K ATPase and SARM1 in photoreceptors and bipolar cells of retina tissue. We conclude that retinoschisin binds to Na/K ATPase on photoreceptor and bipolar cells. This interaction may be part of a novel SARM1-mediated cell signaling pathway required for the maintenance of retinal cell organization and photoreceptor-bipolar synaptic structure.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas do Olho/metabolismo , Células Fotorreceptoras/metabolismo , Retinosquise/metabolismo , Retinosquise/patologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Polaridade Celular , Proteínas do Olho/química , Proteínas do Olho/imunologia , Fator V/metabolismo , Regulação da Expressão Gênica , Humanos , Espectrometria de Massas , Camundongos , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Ligação Proteica , Retina/metabolismo , ATPase Trocadora de Sódio-Potássio/imunologia
20.
Mol Ther ; 12(4): 644-51, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16027044

RESUMO

X-linked juvenile retinoschisis (RS) is a common cause of juvenile macular degeneration in males. RS is characterized by cystic spoke-wheel-like maculopathy, peripheral schisis, and a negative (b-wave more reduced than a-wave) electroretinogram (ERG). These symptoms are due to mutations in the RS1 gene in Xp22.2 leading to loss of functional protein. No medical treatment is currently available. We show here that in an Rs1h-deficient mouse model of human RS, delivery of the human RS1 cDNA with an AAV vector restored expression of retinoschisin to both photoreceptors and the inner retina essentially identical to that seen in wild-type mice. More importantly, unlike an earlier study with a different AAV vector and promoter, this work shows for the first time that therapeutic gene delivery using a highly specific AAV5-opsin promoter vector leads to progressive and significant improvement in both retinal function (ERG) and morphology, with preservation of photoreceptor cells that, without treatment, progressively degenerate.


Assuntos
Moléculas de Adesão Celular/genética , Proteínas do Olho/genética , Terapia Genética , Retina/fisiopatologia , Degeneração Retiniana/genética , Retinosquise/terapia , Animais , Dependovirus/genética , Modelos Animais de Doenças , Eletrorretinografia , Proteínas do Olho/metabolismo , Ligação Genética , Vetores Genéticos , Humanos , Masculino , Camundongos , Camundongos Knockout , Retina/patologia , Retinosquise/genética , Retinosquise/fisiopatologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA