Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 618(7966): 842-848, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258671

RESUMO

Nonsense mutations are the underlying cause of approximately 11% of all inherited genetic diseases1. Nonsense mutations convert a sense codon that is decoded by tRNA into a premature termination codon (PTC), resulting in an abrupt termination of translation. One strategy to suppress nonsense mutations is to use natural tRNAs with altered anticodons to base-pair to the newly emerged PTC and promote translation2-7. However, tRNA-based gene therapy has not yielded an optimal combination of clinical efficacy and safety and there is presently no treatment for individuals with nonsense mutations. Here we introduce a strategy based on altering native tRNAs into  efficient suppressor tRNAs (sup-tRNAs) by individually fine-tuning their sequence to the physico-chemical properties of the amino acid that they carry. Intravenous and intratracheal lipid nanoparticle (LNP) administration of sup-tRNA in mice restored the production of functional proteins with nonsense mutations. LNP-sup-tRNA formulations caused no discernible readthrough at endogenous native stop codons, as determined by ribosome profiling. At clinically important PTCs in the cystic fibrosis transmembrane conductance regulator gene (CFTR), the sup-tRNAs re-established expression and function in cell systems and patient-derived nasal epithelia and restored airway volume homeostasis. These results provide a framework for the development of tRNA-based therapies with a high molecular safety profile and high efficacy in targeted PTC suppression.


Assuntos
Códon sem Sentido , Regulador de Condutância Transmembrana em Fibrose Cística , RNA de Transferência , Animais , Camundongos , Aminoácidos/genética , Códon sem Sentido/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , RNA de Transferência/administração & dosagem , RNA de Transferência/genética , RNA de Transferência/uso terapêutico , Pareamento de Bases , Anticódon/genética , Biossíntese de Proteínas , Mucosa Nasal/metabolismo , Perfil de Ribossomos
2.
Wiley Interdiscip Rev Dev Biol ; 10(6): e400, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33340278

RESUMO

Acute myeloid leukemias (AML) and acute lymphoid leukemias (ALL) are heterogenous diseases encompassing a wide array of genetic mutations with both loss and gain of function phenotypes. Ultimately, these both result in the clonal overgrowth of blast cells in the bone marrow, peripheral blood, and other tissues. As a consequence of this, normal hematopoietic stem cell function is severely hampered. Technologies allowing for the early detection of genetic alterations and understanding of these varied molecular pathologies have helped to advance our treatment regimens toward personalized targeted therapies. In spite of this, both AML and ALL continue to be a major cause of morbidity and mortality worldwide, in part because molecular therapies for the plethora of genetic abnormalities have not been developed. This underscores the current need for better model systems for therapy development. This article reviews the current zebrafish models of AML and ALL and discusses how novel gene editing tools can be implemented to generate better models of acute leukemias. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease Technologies > Perturbing Genes and Generating Modified Animals.


Assuntos
Leucemia Mieloide Aguda , Peixe-Zebra , Animais , Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda/genética , Mutação , Peixe-Zebra/genética
3.
Bioorg Med Chem Lett ; 30(9): 127108, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32192797

RESUMO

Lemur tyrosine kinase 3 (LMTK3) is oncogenic in various cancers. In breast cancer, LMTK3 phosphorylates and modulates the activity of estrogen receptor-α (ERα) and is essential for the growth of ER-positive cells. LMTK3 is highly expressed in ER-negative breast cancer cells, where it promotes invasion via integrin ß1. LMTK3 abundance and/or high nuclear expression have been linked to shorter disease free and overall survival time in a variety of cancers, supporting LMTK3 as a potential target for anticancer drug development. We sought to identify small molecule inhibitors of LMTK3 with the ultimate goal to pharmacologically validate this kinase as a novel target in cancer. We used a homogeneous time resolve fluorescence (HTRF) assay to screen a collection of mixture-based combinatorial chemical libraries containing over 18 million compounds. We identified several cyclic guanidine-linked sulfonamides with sub-micromolar activity and evaluated their binding mode using a 3D homology model of the LMTK3 KD.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana/antagonistas & inibidores , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Sulfonamidas/química , Sulfonamidas/farmacologia , Antineoplásicos/química , Técnicas de Química Combinatória , Descoberta de Drogas , Humanos , Estrutura Molecular , Bibliotecas de Moléculas Pequenas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA