Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Front Immunol ; 14: 1289744, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965310

RESUMO

Non-HLA-directed regulatory autoantibodies (RABs) are known to target G-protein coupled receptors (GPCRs) and thereby contribute to kidney transplant vasculopathy and failure. However, the detailed underlying signaling mechanisms in human microvascular endothelial cells (HMECs) and immune cells need to be clarified in more detail. In this study, we compared the immune stimulatory effects and concomitant intracellular and extracellular signaling mechanisms of immunoglobulin G (IgG)-fractions from kidney transplant patients with allograft vasculopathy (KTx-IgG), to that from patients without vasculopathy, or matched healthy controls (Con-IgG). We found that KTx-IgG from patients with vasculopathy, but not KTx-IgG from patients without vasculopathy or Con-IgG, elicits HMEC activation and subsequent upregulation and secretion of tumor necrosis factor alpha (TNF-α) from HMECs, which was amplified in the presence of the protease-activated thrombin receptor 1 (PAR1) activator thrombin, but could be omitted by selectively blocking the PAR1 receptor. The amount and activity of the TNF-α secreted by HMECs stimulated with KTx-IgG from patients with vasculopathy was sufficient to induce subsequent THP-1 monocytic cell activation. Furthermore, AP-1/c-FOS, was identified as crucial transcription factor complex controlling the KTx-IgG-induced endothelial TNF-α synthesis, and mircoRNA-let-7f-5p as a regulatory element in modulating the underlying signaling cascade. In conclusion, exposure of HMECs to KTx-IgG from patients with allograft vasculopathy, but not KTx-IgG from patients without vasculopathy or healthy Con-IgG, triggers signaling through the PAR1-AP-1/c-FOS-miRNA-let7-axis, to control TNF-α gene transcription and TNF-α-induced monocyte activation. These observations offer a greater mechanistic understanding of endothelial cells and subsequent immune cell activation in the clinical setting of transplant vasculopathy that can eventually lead to transplant failure, irrespective of alloantigen-directed responses.


Assuntos
Nefropatias , Trombina , Humanos , Aloenxertos , Autoanticorpos , Células Endoteliais/fisiologia , Imunoglobulina G , Rim , Monócitos , Receptor PAR-1 , Fator de Transcrição AP-1 , Fator de Necrose Tumoral alfa/metabolismo
2.
J Am Heart Assoc ; 12(23): e032441, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38014691

RESUMO

BACKGROUND: Vasoregulatory autoantibodies including autoantibodies targeting G-protein-coupled receptors might play a functional role in vascular diseases. We investigated the impact of vasoregulatory autoantibodies on clinical outcome after ischemic stroke. METHODS AND RESULTS: Data were used from the PROSCIS-B (Prospective Cohort With Incident Stroke-Berlin). Autoantibody-targeting receptors such as angiotensin II type 1 receptor (AT1R), endothelin-1 type A receptor, complement factor-3 and -5 receptors, vascular endothelial growth factor receptor-1 and -2, vascular endothelial growth factor A and factor B were measured. We explored associations of high antibody levels with (1) poor functional outcome defined as modified Rankin Scale >2 or Barthel Index <60 at 1 year after stroke, (2) Barthel Index scores over time using general estimating equations, and (3) secondary vascular events (recurrent stroke, myocardial infarction) or death up to 3 years using Cox proportional hazard models. We included 491 patients with ischemic stroke with data on autoantibody levels and outcome. In models adjusted for demographics and vascular risk factors, high autoantibody concentrations (quartile 4) targeting complement factor C3a receptor, vascular endothelial growth factor receptor-2, and vascular endothelial growth factor B were associated with poor functional outcome at 1 year: (odds ratio, 2.0 [95% CI, 1.1-3.6]; odds ratio, 1.8 [95% CI, 1.1-3.2]; and odds ratio, 2.1 [95% CI, 1.2-3.6], respectively) and with lower Barthel Index scores over 3 years (complement factor C3a receptor: adjusted ß=-3.3 [95% CI, -5.7 to -0.5]; VEGF-B: adjusted ß=-2.4 [95% CI, -4.8 to -0.06]). Patients with high autoantibody levels were not at higher risk for secondary vascular events or death. CONCLUSIONS: High levels of autoantibodies against vascular endothelial growth factor receptor-2, vascular endothelial growth factor B, and complement factor C3a receptor measured are associated with poor functional outcome after stroke but not with recurrent vascular events or death. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01363856.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Fator A de Crescimento do Endotélio Vascular , Fator B de Crescimento do Endotélio Vascular , AVC Isquêmico/complicações , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Estudos Prospectivos , Autoanticorpos , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/complicações
3.
Front Immunol ; 14: 1214098, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37588595

RESUMO

Introduction: Mesenchymal Stromal/Stem cells (MSCs) are an essential component of the regenerative and immunoregulatory stem cell compartment of the human body and thus of major importance in human physiology. The MSCs elicit their beneficial properties through a multitude of complementary mechanisms, which makes it challenging to assess their phenotype and function in environmental toxicity screening. We here employed the novel combinatorial assays matrix approach/technology to profile the MSC response to the herbicide Atrazine, which is a common environmental xenobiotic, that is in widespread agricultural use in the US and other countries, but banned in the EU. Our here presented approach is representative for screening the impact of environmental xenobiotics and toxins on MSCs as an essential representative component of human physiology and well-being. Methods: We here employed the combinatorial assay matrix approach, including a panel of well standardized assays, such as flow cytometry, multiplex secretome analysis, and metabolic assays, to define the phenotype and functionality of human-donor-derived primary MSCs exposed to the representative xenobiotic Atrazine. This assay matrix approach is now also endorsed for characterization of cell therapies by leading regulatory agencies, such as FDA and EMA. Results: Our results show that the exposure to Atrazine modulates the metabolic activity, size, and granularity of MSCs in a dose and time dependent manner. Intriguingly, Atrazine exposure leads to a broad modulation of the MSCs secretome (both upregulation and downmodulation of certain factors) with the identification of Interleukin-8 as the topmost upregulated representative secretory molecule. Interestingly, Atrazine attenuates IFNγ-induced upregulation of MHC-class-II, but not MHC-class-I, and early phosphorylation signals on MSCs. Furthermore, Atrazine exposure attenuates IFNγ responsive secretome of MSCs. Mechanistic knockdown analysis identified that the Atrazine-induced effector molecule Interleukin-8 affects only certain but not all the related angiogenic secretome of MSCs. Discussion: The here described Combinatorial Assay Matrix Technology identified that Atrazine affects both the innate/resting and cytokine-induced/stimulated assay matrix functionality of human MSCs, as identified through the modulation of selective, but not all effector molecules, thus vouching for the great usefulness of this approach to study the impact of xenobiotics on this important human cellular subset involved in the regenerative healing responses in humans.


Assuntos
Atrazina , Células-Tronco Mesenquimais , Humanos , Atrazina/toxicidade , Interleucina-8 , Xenobióticos , Medula Óssea
4.
Front Immunol ; 14: 1200180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415976

RESUMO

During the pandemic of severe respiratory distress syndrome coronavirus 2 (SARS-CoV2), many novel therapeutic modalities to treat Coronavirus 2019 induced disease (COVID-19) were explored. This study summarizes 195 clinical trials of advanced cell therapies targeting COVID-19 that were registered over the two years between January 2020 to December 2021. In addition, this work also analyzed the cell manufacturing and clinical delivery experience of 26 trials that published their outcomes by July 2022. Our demographic analysis found the highest number of cell therapy trials for COVID-19 was in United States, China, and Iran (N=53, 43, and 19, respectively), with the highest number per capita in Israel, Spain, Iran, Australia, and Sweden (N=0.641, 0.232, 0,223, 0.194, and 0.192 trials per million inhabitants). The leading cell types were multipotent mesenchymal stromal/stem cells (MSCs), natural killer (NK) cells, and mononuclear cells (MNCs), accounting for 72%, 9%, and 6% of the studies, respectively. There were 24 published clinical trials that reported on infusions of MSCs. A pooled analysis of these MSC studies found that MSCs provide a relative risk reduction for all-cause COVID-19 mortality of RR=0.63 (95% CI 0.46 to 0.85). This result corroborates previously published smaller meta-analyses, which suggested that MSC therapy demonstrated a clinical benefit for COVID-19 patients. The sources of the MSCs used in these studies and their manufacturing and clinical delivery methods were remarkably heterogeneous, with some predominance of perinatal tissue-derived products. Our results highlight the important role that cell therapy products may play as an adjunct therapy in the management of COVID-19 and its related complications, as well as the importance of controlling key manufacturing parameters to ensure comparability between studies. Thus, we support ongoing calls for a global registry of clinical studies with MSC products that could better link cell product manufacturing and delivery methods to clinical outcomes. Although advanced cell therapies may provide an important adjunct treatment for patients affected by COVID-19 in the near future, preventing pathology through vaccination still remains the best protection to date. We conducted a systematic review and meta-analysis of advanced cell therapy clinical trials as potential novel treatment for COVID-19 (resulting from SARS-CoV-2 coronavirus infection), including analysis of the global clinical trial landscape, published safety/efficacy outcomes (RR/OR), and details on cell product manufacturing and clinical delivery. This study had a 2-year observation interval from start of January 2020 to end of December 2021, including a follow-up period until end of July to identify published outcomes, which covers the most vivid period of clinical trial activity, and is also the longest observation period studied until today. In total, we identified 195 registered advanced cell therapy studies for COVID-19, employing 204 individual cell products. Leading registered trial activity was attributed to the USA, China, and Iran. Through the end of July 2022, 26 clinical trials were published, with 24 out of 26 articles employing intravenous infusions (IV) of mesenchymal stromal/stem cell (MSC) products. Most of the published trials were attributed to China and Iran. The cumulative results from the 24 published studies employing infusions of MSCs indicated an improved survival (RR=0.63 with 95% Confidence Interval 0.46 to 0.85). Our study is the most comprehensive systematic review and meta-analysis on cell therapy trials for COVID-19 conducted to date, clearly identifying the USA, China, and Iran as leading advanced cell therapy trial countries for COVID-19, with further strong contributions from Israel, Spain, Australia and Sweden. Although advanced cell therapies may provide an important adjunct treatment for patients affected by COVID-19 in the future, preventing pathology through vaccination remains the best protection.


Assuntos
COVID-19 , Transplante de Células-Tronco Mesenquimais , Humanos , COVID-19/terapia , COVID-19/etiologia , SARS-CoV-2 , RNA Viral , Transplante de Células-Tronco Mesenquimais/métodos , Espanha
6.
Autoimmun Rev ; 22(5): 103310, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36906052

RESUMO

G protein-coupled receptors (GPCR) are involved in various physiological and pathophysiological processes. Functional autoantibodies targeting GPCRs have been associated with multiple disease manifestations in this context. Here we summarize and discuss the relevant findings and concepts presented in the biennial International Meeting on autoantibodies targeting GPCRs (the 4th Symposium), held in Lübeck, Germany, 15-16 September 2022. The symposium focused on the current knowledge of these autoantibodies' role in various diseases, such as cardiovascular, renal, infectious (COVID-19), and autoimmune diseases (e.g., systemic sclerosis and systemic lupus erythematosus). Beyond their association with disease phenotypes, intense research related to the mechanistic action of these autoantibodies on immune regulation and pathogenesis has been developed, underscoring the role of autoantibodies targeting GPCRs on disease outcomes and etiopathogenesis. The observation repeatedly highlighted that autoantibodies targeting GPCRs could also be present in healthy individuals, suggesting that anti-GPCR autoantibodies play a physiologic role in modeling the course of diseases. Since numerous therapies targeting GPCRs have been developed, including small molecules and monoclonal antibodies designed for treating cancer, infections, metabolic disorders, or inflammatory conditions, anti-GPCR autoantibodies themselves can serve as therapeutic targets to reduce patients' morbidity and mortality, representing a new area for the development of novel therapeutic interventions.


Assuntos
Doenças Autoimunes , COVID-19 , Humanos , Autoanticorpos , Autoimunidade , Receptores Acoplados a Proteínas G/metabolismo
7.
Cells ; 11(19)2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36231120

RESUMO

We are pleased to present this opening editorial, introducing our topical collection, "The New Era of Mesenchymal Stromal/Stem Cell Functional Application: State of the Art, Therapeutic Challenges and Future Directions" [...].


Assuntos
Células-Tronco Mesenquimais , Medicina Regenerativa , Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Mesenquimais/fisiologia
8.
Stem Cells Transl Med ; 11(1): 2-13, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35641163

RESUMO

The number of mesenchymal stromal/stem cell (MSC) therapeutics and types of clinical applications have greatly diversified during the past decade, including rapid growth of poorly regulated "Stem Cell Clinics" offering diverse "Unproven Stem Cell Interventions." This product diversification necessitates a critical evaluation of the reliance on the 2006 MSC minimal criteria to not only define MSC identity but characterize MSC suitability for intravascular administration. While high-quality MSC therapeutics have been safely administered intravascularly in well-controlled clinical trials, repeated case reports of mild-to-more-severe adverse events have been reported. These are most commonly related to thromboembolic complications upon infusion of highly procoagulant tissue factor (TF/CD142)-expressing MSC products. As TF/CD142 expression varies widely depending on the source and manufacturing process of the MSC product, additional clinical cell product characterization and guidelines are needed to ensure the safe use of MSC products. To minimize risk to patients receiving MSC therapy, we here propose to supplement the minimal criteria used for characterization of MSCs, to include criteria that assess the suitability of MSC products for intravascular use. If cell products are intended for intravascular delivery, which is true for half of all clinical applications involving MSCs, the effects of MSC on coagulation and hemocompatibility should be assessed and expression of TF/CD142 should be included as a phenotypic safety marker. This adjunct criterion will ensure both the identity of the MSCs as well as the safety of the MSCs has been vetted prior to intravascular delivery of MSC products.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Coagulação Sanguínea , Humanos , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais/metabolismo , Tromboplastina/metabolismo
9.
Curr Stem Cell Rep ; 8(2): 72-92, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35502223

RESUMO

Purpose of Review: Cryopreservation and its associated freezing and thawing procedures-short "freeze-thawing"-are among the final steps in economically viable manufacturing and clinical application of diverse cellular therapeutics. Translation from preclinical proof-of-concept studies to larger clinical trials has indicated that these processes may potentially present an Achilles heel to optimal cell product safety and particularly efficacy in clinical trials and routine use. Recent Findings: We review the current state of the literature on how cryopreservation of cellular therapies has evolved and how the application of this technique to different cell types is interlinked with their ability to engraft and function upon transfer in vivo, in particular for hematopoietic stem and progenitor cells (HSPCs), their progeny, and therapeutic cell products derived thereof. We also discuss pros and cons how this may differ for non-hematopoietic mesenchymal stromal/stem cell (MSC) therapeutics. We present different avenues that may be crucial for cell therapy optimization, both, for hematopoietic (e.g., effector, regulatory, and chimeric antigen receptor (CAR)-modified T and NK cell based products) and for non-hematopoietic products, such as MSCs and induced pluripotent stem cells (iPSCs), to achieve optimal viability, recovery, effective cell dose, and functionality of the cryorecovered cells. Summary: Targeted research into optimizing the cryopreservation and freeze-thawing routines and the adjunct manufacturing process design may provide crucial advantages to increase both the safety and efficacy of cellular therapeutics in clinical use and to enable effective market deployment strategies to become economically viable and sustainable medicines.

10.
Front Immunol ; 13: 839844, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371003

RESUMO

Mesenchymal stromal cells (MSCs) possess profound immunomodulatory and regenerative properties that are of clinical use in numerous clinical indications with unmet medical need. Common sources of MSCs include among others, bone marrow (BM), fat, umbilical cord, and placenta-derived decidua stromal cells (DSCs). We here summarize our more than 20-years of scientific experience in the clinical use of MSCs and DSCs in different clinical settings. BM-MSCs were first explored to enhance the engraftment of autografts in hematopoietic cell transplantation (HCT) and osteogenesis imperfecta around 30 years ago. In 2004, our group reported the first anti-inflammatory use of BM-MSCs in a child with grade IV acute graft-versus-host disease (GvHD). Subsequent studies have shown that MSCs appear to be more effective in acute than chronic GvHD. Today BM-MSC-therapy is registered for acute GvHD in Japan and for GvHD in children in Canada and New Zeeland. MSCs first home to the lung following intravenous injection and exert strong local and systemic immunomodulatory effects on the host immune system. Thus, they were studied for ameliorating the cytokine storm in acute respiratory distress syndrome (ARDS). Both, MSCs and DSCs were used to treat SARS-CoV-2 coronavirus-induced disease 2019 (COVID-19)-induced ARDS. In addition, they were also used for other novel indications, such as pneumomediastinum, colon perforation, and radiculomyelopathy. MSC and DSCs trigger coagulation and were thus explored to stop hemorrhages. DSCs appear to be more effective for acute GvHD, ARDS, and hemorrhages, but randomized studies are needed to prove superiority. Stromal cell infusion is safe, well tolerated, and only gives rise to a slight fever in a limited number of patients, but no major side effects have been reported in multiple safety studies and metaanalysis. In this review we summarize current evidence from in vitro studies, animal models, and importantly our clinical experience, to support stromal cell therapy in multiple clinical indications. This encloses MSC's effects on the immune system, coagulation, and their safety and efficacy, which are discussed in relation to prominent clinical trials within the field.


Assuntos
COVID-19 , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório , Animais , COVID-19/terapia , Feminino , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/terapia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Hemorragia/etiologia , Humanos , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Gravidez , SARS-CoV-2
11.
Front Immunol ; 13: 821681, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185912

RESUMO

Peritoneal dialysis (PD) is a valuable 'home treatment' option, even more so during the ongoing Coronavirus pandemic. However, the long-term use of PD is limited by unfavourable tissue remodelling in the peritoneal membrane, which is associated with inflammation-induced angiogenesis. This appears to be driven primarily through vascular endothelial growth factor (VEGF), while the involvement of other angiogenic signaling pathways is still poorly understood. Here, we have identified the crucial contribution of mesothelial cell-derived angiogenic CXC chemokine ligand 1 (CXCL1) to peritoneal angiogenesis in PD. CXCL1 expression and peritoneal microvessel density were analysed in biopsies obtained by the International Peritoneal Biobank (NCT01893710 at www.clinicaltrials.gov), comparing 13 children with end-stage kidney disease before initiating PD to 43 children on chronic PD. The angiogenic potential of mesothelial cell-derived CXCL1 was assessed in vitro by measuring endothelial tube formation of human microvascular endothelial cells (HMECs) treated with conditioned medium from human peritoneal mesothelial cells (HPMCs) stimulated to release CXCL1 by treatment with either recombinant IL-17 or PD effluent. We found that the capillary density in the human peritoneum correlated with local CXCL1 expression. Both CXCL1 expression and microvessel density were higher in PD patients than in the age-matched patients prior to initiation of PD. Exposure of HMECs to recombinant CXCL1 or conditioned medium from IL-17-stimulated HPMCs resulted in increased endothelial tube formation, while selective inhibition of mesothelial CXCL1 production by specific antibodies or through silencing of relevant transcription factors abolished the proangiogenic effect of HPMC-conditioned medium. In conclusion, peritoneal mesothelium-derived CXCL1 promotes endothelial tube formation in vitro and associates with peritoneal microvessel density in uremic patients undergoing PD, thus providing novel targets for therapeutic intervention to prolong PD therapy.


Assuntos
Quimiocina CXCL1/metabolismo , Neovascularização Patológica/patologia , Diálise Peritoneal/métodos , Peritônio/irrigação sanguínea , Terapia de Substituição Renal/métodos , COVID-19/patologia , Células Cultivadas , Criança , Pré-Escolar , Epitélio/metabolismo , Humanos , Lactente , Interleucina-17/metabolismo , Falência Renal Crônica/terapia , Peritônio/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Remodelação Vascular/fisiologia
12.
Front Immunol ; 12: 774052, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858433

RESUMO

Abstract: Systemic chronic microinflammation and altered cytokine signaling, with adjunct cardiovascular disease (CVD), endothelial maladaptation and dysfunction is common in dialysis patients suffering from end-stage renal disease and associated with increased morbidity and mortality. New hemodialysis filters might offer improvements. We here studied the impact of novel improved molecular cut-off hemodialysis filters on systemic microinflammation, uremia and endothelial dysfunction. Human endothelial cells (ECs) were incubated with uremic serum obtained from patients treated with two different hemodialysis regimens in the Permeability Enhancement to Reduce Chronic Inflammation (PERCI-II) crossover clinical trial, comparing High-Flux (HF) and Medium Cut-Off (MCO) membranes, and then assessed for their vascular endothelial growth factor (VEGF) production and angiogenesis. Compared to HF membranes, dialysis with MCO membranes lead to a reduction in proinflammatory mediators and reduced endothelial VEGF production and angiogenesis. Cytokine multiplex screening identified tumor necrosis factor (TNF) superfamily members as promising targets. The influence of TNF-α and its soluble receptors (sTNF-R1 and sTNF-R2) on endothelial VEGF promoter activation, protein release, and the involved signaling pathways was analyzed, revealing that this detrimental signaling was indeed induced by TNF-α and mediated by AP-1/c-FOS signaling. In conclusion, uremic toxins, in particular TNF-signaling, promote endothelial maladaptation, VEGF expression and aberrant angiogenesis, which can be positively modulated by dialysis with novel MCO membranes. Translational Perspective and Graphical Abstract: Systemic microinflammation, altered cytokine signaling, cardiovascular disease, and endothelial maladaptation/dysfunction are common clinical complications in dialysis patients suffering from end-stage renal disease. We studied the impact of novel improved medium-cut-off hemodialysis filters on uremia and endothelial dysfunction. We can show that uremic toxins, especially TNF-signaling, promote endothelial maladaptation, VEGF expression and aberrant angiogenesis, which can be positively modulated by dialysis with novel improved medium-cut-off membranes.


Assuntos
Endotélio Vascular/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Uremia/complicações , Fator A de Crescimento do Endotélio Vascular/metabolismo , Idoso , Biomarcadores , Biologia Computacional , Citocinas/sangue , Citocinas/metabolismo , Suscetibilidade a Doenças , Células Endoteliais/metabolismo , Endotélio Vascular/patologia , Feminino , Humanos , Inflamação/diagnóstico , Masculino , Pessoa de Meia-Idade , Proteômica/métodos , Diálise Renal/métodos , Transdução de Sinais , Uremia/etiologia , Uremia/terapia
13.
Biofabrication ; 13(4)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34111862

RESUMO

The therapeutic efficacy of clinically applied mesenchymal stromal cells (MSCs) is limited due to their injection into harshin vivoenvironments, resulting in the significant loss of their secretory function upon transplantation. A potential strategy for preserving their full therapeutic potential is encapsulation of MSCs in a specialized protective microenvironment, for example hydrogels. However, commonly used injectable hydrogels for cell delivery fail to provide the bio-instructive cues needed to sustain and stimulate cellular therapeutic functions. Here we introduce a customizable collagen I-hyaluronic acid (COL-HA)-based hydrogel platform for the encapsulation of MSCs. Cells encapsulated within COL-HA showed a significant expansion of their secretory profile compared to MSCs cultured in standard (2D) cell culture dishes or encapsulated in other hydrogels. Functionalization of the COL-HA backbone with thiol-modified glycoproteins such as laminin led to further changes in the paracrine profile of MSCs. In depth profiling of more than 250 proteins revealed an expanded secretion profile of proangiogenic, neuroprotective and immunomodulatory paracrine factors in COL-HA-encapsulated MSCs with a predicted augmented pro-angiogenic potential. This was confirmed by increased capillary network formation of endothelial cells stimulated by conditioned media from COL-HA-encapsulated MSCs. Our findings suggest that encapsulation of therapeutic cells in a protective COL-HA hydrogel layer provides the necessary bio-instructive cues to maintain and direct their therapeutic potential. Our customizable hydrogel combines bioactivity and clinically applicable properties such as injectability, on-demand polymerization and tissue-specific elasticity, all features that will support and improve the ability to successfully deliver functional MSCs into patients.


Assuntos
Células-Tronco Mesenquimais , Colágeno Tipo I , Células Endoteliais , Humanos , Ácido Hialurônico , Hidrogéis
14.
Cells ; 10(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920990

RESUMO

Thrombin, the ligand of the protease-activated receptor 1 (PAR1), is a well-known stimulator of proangiogenic responses in vascular endothelial cells (ECs), which are mediated through the induction of vascular endothelial growth factor (VEGF). However, the transcriptional events underlying this thrombin-induced VEGF induction and angiogenic response are less well understood at present. As reported here, we conducted detailed promotor activation and signal transduction pathway studies in human microvascular ECs, to decipher the transcription factors and the intracellular signaling events underlying the thrombin and PAR-1-induced endothelial VEGF induction. We found that c-FOS is a key transcription factor controlling thrombin-induced EC VEGF synthesis and angiogenesis. Upon the binding and internalization of its G-protein-coupled PAR-1 receptor, thrombin triggers ERK1/2 signaling and activation of the nuclear AP-1/c-FOS transcription factor complex, which then leads to VEGF transcription, extracellular secretion, and concomitant proangiogenic responses of ECs. In conclusion, exposure of human microvascular ECs to thrombin triggers signaling through the PAR-1-ERK1/2-AP-1/c-FOS axis to control VEGF gene transcription and VEGF-induced angiogenesis. These observations offer a greater understanding of endothelial responses to thromboinflammation, which may help to interpret the results of clinical trials tackling the conditions associated with endothelial injury and thrombosis.


Assuntos
Regulação da Expressão Gênica , Neovascularização Fisiológica/genética , Trombina/farmacologia , Transcrição Gênica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Microvasos/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Receptor PAR-1/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
15.
BMJ ; 371: m3734, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087345

RESUMO

OBJECTIVE: To assess whether reshaping of the immune balance by infusion of autologous natural regulatory T cells (nTregs) in patients after kidney transplantation is safe, feasible, and enables the tapering of lifelong high dose immunosuppression, with its limited efficacy, adverse effects, and high direct and indirect costs, along with addressing several key challenges of nTreg treatment, such as easy and robust manufacturing, danger of over immunosuppression, interaction with standard care drugs, and functional stability in an inflammatory environment in a useful proof-of-concept disease model. DESIGN: Investigator initiated, monocentre, nTreg dose escalation, phase I/IIa clinical trial (ONEnTreg13). SETTING: Charité-University Hospital, Berlin, Germany, within the ONE study consortium (funded by the European Union). PARTICIPANTS: Recipients of living donor kidney transplant (ONEnTreg13, n=11) and corresponding reference group trial (ONErgt11-CHA, n=9). INTERVENTIONS: CD4+ CD25+ FoxP3+ nTreg products were given seven days after kidney transplantation as one intravenous dose of 0.5, 1.0, or 2.5-3.0×106 cells/kg body weight, with subsequent stepwise tapering of triple immunosuppression to low dose tacrolimus monotherapy until week 48. MAIN OUTCOME MEASURES: The primary clinical and safety endpoints were assessed by a composite endpoint at week 60 with further three year follow-up. The assessment included incidence of biopsy confirmed acute rejection, assessment of nTreg infusion related adverse effects, and signs of over immunosuppression. Secondary endpoints addressed allograft functions. Accompanying research included a comprehensive exploratory biomarker portfolio. RESULTS: For all patients, nTreg products with sufficient yield, purity, and functionality could be generated from 40-50 mL of peripheral blood taken two weeks before kidney transplantation. None of the three nTreg dose escalation groups had dose limiting toxicity. The nTreg and reference groups had 100% three year allograft survival and similar clinical and safety profiles. Stable monotherapy immunosuppression was achieved in eight of 11 (73%) patients receiving nTregs, while the reference group remained on standard dual or triple drug immunosuppression (P=0.002). Mechanistically, the activation of conventional T cells was reduced and nTregs shifted in vivo from a polyclonal to an oligoclonal T cell receptor repertoire. CONCLUSIONS: The application of autologous nTregs was safe and feasible even in patients who had a kidney transplant and were immunosuppressed. These results warrant further evaluation of Treg efficacy and serve as the basis for the development of next generation nTreg approaches in transplantation and any immunopathologies. TRIAL REGISTRATION: NCT02371434 (ONEnTreg13) and EudraCT:2011-004301-24 (ONErgt11).


Assuntos
Terapia de Imunossupressão/métodos , Imunossupressores/administração & dosagem , Transplante de Rim/métodos , Linfócitos T Reguladores/transplante , Tacrolimo/administração & dosagem , Adulto , Aloenxertos/imunologia , Estudos de Viabilidade , Feminino , Alemanha , Sobrevivência de Enxerto/imunologia , Humanos , Infusões Intravenosas , Rim/imunologia , Doadores Vivos , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Resultado do Tratamento , Suspensão de Tratamento
16.
Front Immunol ; 11: 1091, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32574263

RESUMO

Numerous clinical trials of mesenchymal stromal/stem cells (MSCs) as a new treatment for coronavirus-induced disease (COVID-19) have been registered recently, most of them based on intravenous (IV) infusion. There is no approved effective therapy for COVID-19, but MSC therapies have shown first promise in the treatment of acute respiratory distress syndrome (ARDS) pneumonia, inflammation, and sepsis, which are among the leading causes of mortality in COVID-19 patients. Many of the critically ill COVID-19 patients are in a hypercoagulable procoagulant state and at high risk for disseminated intravascular coagulation, thromboembolism, and thrombotic multi-organ failure, another cause of high fatality. It is not yet clear whether IV infusion is a safe and effective route of MSC delivery in COVID-19, since MSC-based products express variable levels of highly procoagulant tissue factor (TF/CD142), compromising the cells' hemocompatibility and safety profile. Of concern, IV infusions of poorly characterized MSC products with unchecked (high) TF/CD142 expression could trigger blood clotting in COVID-19 and other vulnerable patient populations and further promote the risk for thromboembolism. In contrast, well-characterized products with robust manufacturing procedures and optimized modes of clinical delivery hold great promise for ameliorating COVID-19 by exerting their beneficial immunomodulatory effects, inducing tissue repair and organ protection. While the need for MSC therapy in COVID-19 is apparent, integrating both innate and adaptive immune compatibility testing into the current guidelines for cell, tissue, and organ transplantation is critical for safe and effective therapies. It is paramount to only use well-characterized, safe MSCs even in the most urgent and experimental treatments. We here propose three steps to mitigate the risk for these vulnerable patients: (1) updated clinical guidelines for cell and tissue transplantation, (2) updated minimal criteria for characterization of cellular therapeutics, and (3) updated cell therapy routines reflecting specific patient needs.


Assuntos
Infecções por Coronavirus/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Pneumonia Viral/terapia , Imunologia de Transplantes , Administração Intravenosa , Transtornos da Coagulação Sanguínea/etiologia , COVID-19 , Terapia Baseada em Transplante de Células e Tecidos/métodos , Infecções por Coronavirus/complicações , Infecções por Coronavirus/imunologia , Guias como Assunto , Humanos , Injeções Intramusculares , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/imunologia
17.
J Pathol ; 251(2): 175-186, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32232854

RESUMO

Neutrophil infiltration is a hallmark of peritoneal inflammation, but mechanisms regulating neutrophil recruitment in patients with peritoneal dialysis (PD)-related peritonitis are not fully defined. We examined 104 samples of PD effluent collected during acute peritonitis for correspondence between a broad range of soluble parameters and neutrophil counts. We observed an association between peritoneal IL-17 and neutrophil levels. This relationship was evident in effluent samples with low but not high IFN-γ levels, suggesting a differential effect of IFN-γ concentration on neutrophil infiltration. Surprisingly, there was no association of neutrophil numbers with the level of CXCL1, a key IL-17-induced neutrophil chemoattractant. We investigated therefore the production of CXCL1 by human peritoneal mesothelial cells (HPMCs) under in vitro conditions mimicking clinical peritonitis. Stimulation of HPMCs with IL-17 increased CXCL1 production through induction of transcription factor SP1 and activation of the SP1-binding region of the CXCL1 promoter. These effects were amplified by TNFα. In contrast, IFN-γ dose-dependently suppressed IL-17-induced SP1 activation and CXCL1 production through a transcriptional mechanism involving STAT1. The SP1-mediated induction of CXCL1 was also observed in HPMCs exposed to PD effluent collected during peritonitis and containing IL-17 and TNFα, but not IFN-γ. Supplementation of the effluent with IFN-γ led to a dose-dependent activation of STAT1 and a resultant inhibition of SP1-induced CXCL1 expression. Transmesothelial migration of neutrophils in vitro increased upon stimulation of HPMCs with IL-17 and was reduced by IFN-γ. In addition, HPMCs were capable of binding CXCL1 at their apical cell surface. These observations indicate that changes in relative peritoneal concentrations of IL-17 and IFN-γ can differently engage SP1-STAT1, impacting on mesothelial cell transcription of CXCL1, whose release and binding to HPMC surface may determine optimal neutrophil recruitment and retention during peritonitis. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Quimiocina CXCL1/metabolismo , Interferon gama/farmacologia , Interleucina-17/farmacologia , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Peritônio/efeitos dos fármacos , Peritonite/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Quimiocina CXCL1/genética , Feminino , Humanos , Interferon gama/metabolismo , Interleucina-17/metabolismo , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Neutrófilos/patologia , Peritônio/metabolismo , Peritônio/patologia , Peritonite/genética , Peritonite/patologia , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Fator de Transcrição Sp1/genética , Transcrição Gênica
20.
Front Immunol ; 10: 2474, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781089

RESUMO

Heterogeneous populations of human bone marrow-derived stromal cells (BMSC) are among the most frequently tested cellular therapeutics for treating degenerative and immune disorders, which occur predominantly in the aging population. Currently, it is unclear whether advanced donor age and commonly associated comorbidities affect the properties of ex vivo-expanded BMSCs. Thus, we stratified cells from adult and elderly donors from our biobank (n = 10 and n = 13, mean age 38 and 72 years, respectively) and compared their phenotypic and functional performance, using multiple assays typically employed as minimal criteria for defining multipotent mesenchymal stromal cells (MSCs). We found that BMSCs from both cohorts meet the standard criteria for MSC, exhibiting similar morphology, growth kinetics, gene expression profiles, and pro-angiogenic and immunosuppressive potential and the capacity to differentiate toward adipogenic, chondrogenic, and osteogenic lineages. We found no substantial differences between cells from the adult and elderly cohorts. As positive controls, we studied the impact of in vitro aging and inflammatory cytokine stimulation. Both conditions clearly affected the cellular properties, independent of donor age. We conclude that in vitro aging rather than in vivo donor aging influences BMSC characteristics.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Adultas/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Adipogenia , Adulto , Células-Tronco Adultas/imunologia , Idoso , Envelhecimento/imunologia , Envelhecimento/patologia , Envelhecimento/fisiologia , Bancos de Espécimes Biológicos , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Senescência Celular/imunologia , Senescência Celular/fisiologia , Condrogênese , Comorbidade , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/imunologia , Osteogênese , Fenótipo , Doadores de Tecidos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA