Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 32(1): 57-73, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33175605

RESUMO

Insulin controls glucose uptake into muscle and fat cells by inducing a net redistribution of glucose transporter 4 (GLUT4) from intracellular storage to the plasma membrane (PM). The TBC1D4-RAB10 signaling module is required for insulin-stimulated GLUT4 translocation to the PM, although where it intersects GLUT4 traffic was unknown. Here we demonstrate that TBC1D4-RAB10 functions to control GLUT4 mobilization from a trans-Golgi network (TGN) storage compartment, establishing that insulin, in addition to regulating the PM proximal effects of GLUT4-containing vesicles docking to and fusion with the PM, also directly regulates the behavior of GLUT4 deeper within the cell. We also show that GLUT4 is retained in an element/domain of the TGN from which newly synthesized lysosomal proteins are targeted to the late endosomes and the ATP7A copper transporter is translocated to the PM by elevated copper. Insulin does not mobilize ATP7A nor does copper mobilize GLUT4, and RAB10 is not required for copper-elicited ATP7A mobilization. Consequently, GLUT4 intracellular sequestration and mobilization by insulin is achieved, in part, through utilizing a region of the TGN devoted to specialized cargo transport in general rather than being specific for GLUT4. Our results define the GLUT4-containing region of the TGN as a sorting and storage site from which different cargo are mobilized by distinct signals through unique molecular machinery.


Assuntos
Núcleo Celular/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/farmacologia , Proteínas rab de Ligação ao GTP/metabolismo , Células 3T3-L1 , Animais , Núcleo Celular/efeitos dos fármacos , Cobre/farmacologia , Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Modelos Biológicos , Membrana Nuclear/efeitos dos fármacos , Membrana Nuclear/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Rede trans-Golgi/efeitos dos fármacos , Rede trans-Golgi/metabolismo
2.
Proc Natl Acad Sci U S A ; 108(25): 10162-7, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21646544

RESUMO

Insulin resistance is a component of the metabolic syndrome and Type 2 diabetes. It has been recently shown that in liver insulin resistance is not complete. This so-called selective insulin resistance is characterized by defective insulin inhibition of hepatic glucose output while insulin-induced lipogenesis is maintained. How this occurs and whether uncoupled insulin action develops in other tissues is unknown. Here we show in a model of chronic hyperinsulinemia that adipocytes develop selective insulin resistance in which translocation of the GLUT4 glucose transporter to the cell surface is blunted yet nuclear exclusion of the FoxO1 transcription factor is preserved, rendering uncoupled insulin-controlled carbohydrate and lipid metabolisms. We found that in adipocytes FoxO1 nuclear exclusion has a lower half-maximal insulin dose than GLUT4 translocation, and it is because of this inherent greater sensitivity that control of FoxO1 by physiological insulin concentrations is maintained in adipocytes with compromised insulin signaling. Pharmacological and genetic interventions revealed that insulin regulates GLUT4 and FoxO1 through the PI3-kinase isoform p110α, although FoxO1 showed higher sensitivity to p110α activity than GLUT4. Transient down-regulation and overexpression of Akt isoforms in adipocytes demonstrated that insulin-activated PI3-kinase signals to GLUT4 primarily through Akt2 kinase, whereas Akt1 and Akt2 signal to FoxO1. We propose that the lower threshold of insulin activity for FoxO1's nuclear exclusion is in part due to its regulation by both Akt isoforms. Identification of uncoupled insulin action in adipocytes suggests this condition might be a general phenomenon of insulin target tissues contributing to insulin resistance's pathophysiology.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Hiperinsulinismo/fisiopatologia , Insulina/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Transportador de Glucose Tipo 4/genética , Humanos , Insulina/farmacologia , Resistência à Insulina/fisiologia , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia
3.
Mol Cell ; 39(6): 912-924, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20864038

RESUMO

RNA polymerases are key multisubunit cellular enzymes. Microscopy studies indicated that RNA polymerase I assembles near its promoter. However, the mechanism by which RNA polymerase II is assembled from its 12 subunits remains unclear. We show here that RNA polymerase II subunits Rpb1 and Rpb3 accumulate in the cytoplasm when assembly is prevented and that nuclear import of Rpb1 requires the presence of all subunits. Using MS-based quantitative proteomics, we characterized assembly intermediates. These included a cytoplasmic complex containing subunits Rpb1 and Rpb8 associated with the HSP90 cochaperone hSpagh (RPAP3) and the R2TP/Prefoldin-like complex. Remarkably, HSP90 activity stabilized incompletely assembled Rpb1 in the cytoplasm. Our data indicate that RNA polymerase II is built in the cytoplasm and reveal quality-control mechanisms that link HSP90 to the nuclear import of fully assembled enzymes. hSpagh also bound the free RPA194 subunit of RNA polymerase I, suggesting a general role in assembling RNA polymerases.


Assuntos
Proteínas de Transporte/metabolismo , Citoplasma/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/metabolismo , Multimerização Proteica/fisiologia , RNA Polimerase II/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/fisiologia , Alfa-Amanitina/farmacologia , Proteínas Reguladoras de Apoptose , Linhagem Celular Tumoral , Genes Reporter/genética , HIV-1/genética , Humanos , Complexos Multiproteicos/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica/fisiologia , Mapeamento de Interação de Proteínas/métodos , Multimerização Proteica/efeitos dos fármacos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteômica , RNA Polimerase I/metabolismo , RNA Polimerase II/genética , RNA Interferente Pequeno
4.
Mol Biol Cell ; 21(12): 2034-44, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20410133

RESUMO

Insulin stimulates glucose uptake by regulating translocation of the GLUT4 glucose transporter from intracellular compartments to the plasma membrane. In the absence of insulin GLUT4 is actively sequestered away from the general endosomes into GLUT4-specialized compartments, thereby controlling the amount of GLUT4 at the plasma membrane. Here, we investigated the role of the aminopeptidase IRAP in GLUT4 trafficking. In unstimulated IRAP knockdown adipocytes, plasma membrane GLUT4 levels are elevated because of increased exocytosis, demonstrating an essential role of IRAP in GLUT4 retention. Current evidence supports the model that AS160 RabGAP, which is required for basal GLUT4 retention, is recruited to GLUT4 compartments via an interaction with IRAP. However, here we show that AS160 recruitment to GLUT4 compartments and AS160 regulation of GLUT4 trafficking were unaffected by IRAP knockdown. These results demonstrate that AS160 is recruited to membranes by an IRAP-independent mechanism. Consistent with a role independent of AS160, we showed that IRAP functions in GLUT4 sorting from endosomes to GLUT4-specialized compartments. This is revealed by the relocalization of GLUT4 to endosomes in IRAP knockdown cells. Although IRAP knockdown has profound effects on GLUT4 traffic, GLUT4 knockdown does not affect IRAP trafficking, demonstrating that IRAP traffics independent of GLUT4. In sum, we show that IRAP is both cargo and a key regulator of the insulin-regulated pathway.


Assuntos
Cistinil Aminopeptidase/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Cistinil Aminopeptidase/química , Endocitose/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Proteínas Ativadoras de GTPase/metabolismo , Técnicas de Silenciamento de Genes , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Camundongos , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos
5.
J Biol Chem ; 284(29): 19727-43, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19451649

RESUMO

HIV-1 Gag can assemble and generate virions at the plasma membrane, but it is also present in endosomes where its role remains incompletely characterized. Here, we show that HIV-1 RNAs and Gag are transported on endosomal vesicles positive for TiVamp, a v-SNARE involved in fusion events with the plasma membrane. Inhibition of endosomal traffic did not prevent viral release. However, inhibiting lysosomal degradation induced an accumulation of Gag in endosomes and increased viral production 7-fold, indicating that transport of Gag to lysosomes negatively regulates budding. This also suggested that endosomal Gag-RNA complexes could access retrograde pathways to the cell surface and indeed, depleting cells of TiVamp-reduced viral production. Moreover, inhibition of endosomal transport prevented the accumulation of Gag at sites of cellular contact. HIV-1 Gag could thus generate virions using two pathways, either directly from the plasma membrane or through an endosome-dependent route. Endosomal Gag-RNA complexes may be delivered at specific sites to facilitate cell-to-cell viral transmission.


Assuntos
Endossomos/metabolismo , HIV-1/metabolismo , RNA Viral/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Transporte Biológico/efeitos dos fármacos , Western Blotting , Cloreto de Cálcio/farmacologia , Linhagem Celular Tumoral , Cloroquina/farmacologia , Endossomos/ultraestrutura , Endossomos/virologia , Imunofluorescência , HIV-1/genética , HIV-1/isolamento & purificação , Humanos , Hibridização in Situ Fluorescente , Ionóforos/farmacologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Eletrônica , Monensin/farmacologia , Nocodazol/farmacologia , Transporte de RNA/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Viral/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Fatores de Tempo , Transfecção , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
6.
Mol Biol Cell ; 18(8): 3193-203, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17538020

RESUMO

Retroviral assembly is driven by Gag, and nascent viral particles escape cells by recruiting the machinery that forms intralumenal vesicles of multivesicular bodies. In this study, we show that the clathrin adaptor complex AP-1 is involved in retroviral release. The absence of AP-1mu obtained by genetic knock-out or by RNA interference reduces budding of murine leukemia virus (MLV) and HIV-1, leading to a delay of viral propagation in cell culture. In contrast, overexpression of AP-1mu enhances release of HIV-1 Gag. We show that the AP-1 complex facilitates retroviral budding through a direct interaction between the matrix and AP-1mu. Less MLV Gag is found associated with late endosomes in cells lacking AP-1, and our results suggest that AP-1 and AP-3 could function on the same pathway that leads to Gag release. In addition, we find that AP-1 interacts with Tsg101 and Nedd4.1, two cellular proteins known to be involved in HIV-1 and MLV budding. We propose that AP-1 promotes Gag release by transporting it to intracellular sites of active budding, and/or by facilitating its interactions with other cellular partners.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Produtos do Gene gag/metabolismo , HIV-1/fisiologia , Vírus da Leucemia Murina/fisiologia , Complexo 3 de Proteínas Adaptadoras/metabolismo , Subunidades mu do Complexo de Proteínas Adaptadoras/metabolismo , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte , HIV-1/ultraestrutura , Células HeLa , Humanos , Camundongos , Mutação/genética , Ligação Proteica , Transporte Proteico , Ratos , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Replicação Viral
7.
Retrovirology ; 4: 36, 2007 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-17537237

RESUMO

HIV-1 transcription is tightly regulated: silent in long-term latency and highly active in acutely-infected cells. Transcription is activated by the viral protein Tat, which recruits the elongation factor P-TEFb by binding the TAR sequence present in nascent HIV-1 RNAs. In this study, we analyzed the dynamic of the TAR:Tat:P-TEFb complex in living cells, by performing FRAP experiments at HIV-1 transcription sites. Our results indicate that a large fraction of Tat present at these sites is recruited by Cyclin T1. We found that in the presence of Tat, Cdk9 remained bound to nascent HIV-1 RNAs for 71s. In contrast, when transcription was activated by PMA/ionomycin, in the absence of Tat, Cdk9 turned-over rapidly and resided on the HIV-1 promoter for only 11s. Thus, the mechanism of trans-activation determines the residency time of P-TEFb at the HIV-1 gene, possibly explaining why Tat is such a potent transcriptional activator. In addition, we observed that Tat occupied HIV-1 transcription sites for 55s, suggesting that the TAR:Tat:P-TEFb complex dissociates from the polymerase following transcription initiation, and undergoes subsequent cycles of association/dissociation.


Assuntos
Produtos do Gene tat/metabolismo , Repetição Terminal Longa de HIV , HIV-1/genética , Fatores de Alongamento de Peptídeos/metabolismo , RNA Viral/metabolismo , Transcrição Gênica , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/metabolismo , Recuperação de Fluorescência Após Fotodegradação , HIV-1/fisiologia , Humanos , Cinética , Ligação Proteica , Ativação Transcricional , Produtos do Gene tat do Vírus da Imunodeficiência Humana
8.
Virology ; 349(2): 430-9, 2006 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-16635502

RESUMO

L-domain-containing proteins from animal retroviruses play a critical role in the recruitment of the host cell endocytic machinery that is required for retroviruses budding. We recently demonstrated that phosphorylation of the p6(gag) protein containing the L-domain of the human immunodeficiency virus type 1 regulates viral assembly and budding. Here, we investigated whether or not the L-domain-containing protein from another human retrovirus, namely the matrix protein of the human T-cell leukemia virus type 1, that contains the canonical PTAP and PPPY L-domain motifs, shares similar functional properties. We found that MA is phosphorylated at several sites. We identified one phosphorylated amino acid in the HTLV-1 MA protein as being S105, located in the close vicinity to the L-domain sequence. S105 phosphorylation was found to be mediated by the cellular kinase ERK-2 that is incorporated within HTLV-1 virus particles in an active form. Mutation of the ERK-2 target S105 residue into an alanine was found to decrease viral release and budding efficiency of the HTLV-1(ACH) molecular clone from transfected cells. Our data thus support the postulate that phosphorylation of retroviral L-domain proteins is a common feature to retroviruses that participates in the regulation of viral budding.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano/crescimento & desenvolvimento , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas da Matriz Viral/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Linhagem Celular , Humanos , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Fosforilação , Estrutura Terciária de Proteína , Serina/metabolismo , Proteínas da Matriz Viral/química , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA