Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 10: 1352, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010199

RESUMO

Previous genetic studies on susceptibility to otitis media and airway infections have focused on immune pathways acting within the local mucosal epithelium, and outside of allergic rhinitis and asthma, limited studies exist on the overlaps at the gene, pathway or network level between the upper and lower airways. In this report, we compared [1] pathways identified from network analysis using genes derived from published genome-wide family-based and association studies for otitis media, sinusitis, and lung phenotypes, to [2] pathways identified using differentially expressed genes from RNA-sequence data from lower airway, sinus, and middle ear tissues, in particular cholesteatoma tissue compared to middle ear mucosa. For otitis media, a large number of genes (n = 1,806) were identified as differentially expressed between cholesteatoma and middle ear mucosa, which in turn led to the identification of 68 pathways that are enriched in cholesteatoma. Two differentially expressed genes CR1 and SAA1 overlap in middle ear, sinus, and lower airway samples and are potentially novel genes for otitis media susceptibility. In addition, 56 genes were differentially expressed in both tissues from the middle ear and either sinus or lower airways. Pathways that are common in upper and lower airway diseases, whether from published DNA studies or from our RNA-sequencing analyses, include chromatin organization/remodeling, endocytosis, immune system process, protein folding, and viral process. Taken together, our findings from genetic susceptibility and differential tissue expression studies support the hypothesis that the unified airway theory wherein the upper and lower respiratory tracts act as an integrated unit also applies to infectious and nonallergic airway epithelial disease. Our results may be used as reference for identification of genes or pathways that are relevant to upper and lower airways, whether common across sites, or unique to each disease.

2.
Artigo em Inglês | MEDLINE | ID: mdl-29891599

RESUMO

Cryptococcal meningitis (CM), caused primarily by Cryptococcus neoformans, is uniformly fatal if not treated. Treatment options are limited, especially in resource-poor geographical regions, and mortality rates remain high despite current therapies. Here we evaluated the in vitro and in vivo activity of several compounds, including APX001A and its prodrug, APX001, currently in clinical development for the treatment of invasive fungal infections. These compounds target the conserved Gwt1 enzyme that is required for the localization of glycosylphosphatidylinositol (GPI)-anchored cell wall mannoproteins in fungi. The Gwt1 inhibitors had low MIC values, ranging from 0.004 µg/ml to 0.5 µg/ml, against both C. neoformans and C. gattii APX001A and APX2020 demonstrated in vitro synergy with fluconazole (fractional inhibitory concentration index, 0.37 for both). In a CM model, APX001 and fluconazole each alone reduced the fungal burden in brain tissue (0.78 and 1.04 log10 CFU/g, respectively), whereas the combination resulted in a reduction of 3.52 log10 CFU/g brain tissue. Efficacy, as measured by a reduction in the brain and lung tissue fungal burden, was also observed for another Gwt1 inhibitor prodrug, APX2096, where dose-dependent reductions in the fungal burden ranged from 5.91 to 1.79 log10 CFU/g lung tissue and from 7.00 and 0.92 log10 CFU/g brain tissue, representing the nearly complete or complete sterilization of lung and brain tissue at the higher doses. These data support the further clinical evaluation of this new class of antifungal agents for the treatment of CM.


Assuntos
Amidoidrolases/antagonistas & inibidores , Aminopiridinas/farmacologia , Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Proteínas Fúngicas/antagonistas & inibidores , Isoxazóis/farmacologia , Meningite Criptocócica/tratamento farmacológico , Organofosfatos/farmacologia , Pró-Fármacos/farmacologia , Administração Oral , Amidoidrolases/genética , Amidoidrolases/metabolismo , Aminopiridinas/síntese química , Aminopiridinas/farmacocinética , Animais , Antifúngicos/síntese química , Antifúngicos/farmacocinética , Encéfalo/efeitos dos fármacos , Encéfalo/microbiologia , Cryptococcus gattii/efeitos dos fármacos , Cryptococcus gattii/enzimologia , Cryptococcus gattii/genética , Cryptococcus gattii/crescimento & desenvolvimento , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/crescimento & desenvolvimento , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Sinergismo Farmacológico , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Injeções Intraperitoneais , Isoxazóis/síntese química , Isoxazóis/farmacocinética , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Masculino , Meningite Criptocócica/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Organofosfatos/síntese química , Organofosfatos/farmacocinética , Pró-Fármacos/síntese química , Pró-Fármacos/farmacocinética
3.
Bioorg Med Chem Lett ; 27(11): 2465-2471, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28412204

RESUMO

A novel antifungal strategy targeting the inhibition of calcineurin is described. To develop a calcineurin based inhibitor of pathogenic fungi, analogs of FK506 were synthesized that were able to permeate mammalian but not fungal cells. Antagonists in combination with FK506 were not immunosuppressive and retained antifungal activity in A. fumigatus. To reduce the dosage burden of the antagonist, murine oral PK was improved an order of magnitude relative to previous FK506 antagonists.


Assuntos
Antifúngicos/farmacologia , Inibidores de Calcineurina/farmacologia , Tacrolimo/análogos & derivados , Tacrolimo/farmacologia , Animais , Antifúngicos/síntese química , Antifúngicos/farmacocinética , Antifúngicos/toxicidade , Aspergillus fumigatus/efeitos dos fármacos , Inibidores de Calcineurina/síntese química , Inibidores de Calcineurina/farmacocinética , Inibidores de Calcineurina/toxicidade , Chlorocebus aethiops , Células Hep G2 , Humanos , Interleucina-2/metabolismo , Células Jurkat , Tacrolimo/síntese química , Tacrolimo/farmacocinética , Tacrolimo/toxicidade , Proteína 1A de Ligação a Tacrolimo/química , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA